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Abstract. The article discusses the main component parameters and their interdependencies for a composite stress ribbon 
trough arch structure. The paper presents a methodology for balancing the combined suspension through arch steel bridge 
structure, suggests analytical methods for putting together the bearing components of the bridge and considers rational 
component parameters. 
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Introduction 

A stress ribbon suspension structure appears as one of the 
most efficient, cost-effective and graceful types of suspen-
sion bridge constructions. Due to its properties and geo-
metric shape, these structures are most commonly used 
for building footbridges (Schlaich et  al., 2005; Strasky, 
2005). The main bearing components of the stress ribbon 
bridge include high-strength steel cables, sheets or beams 
(Juozapaitis, Vainiūnas, & Kaklauskas, 2006; Strasky, 2005; 
Schlaich et  al., 2005; Sandovič, Juozapaitis, & Kliukas, 
2011). Stress ribbon suspension bridges are very effective 
when a strong natural foundation is used for rear sup-
ports (Strasky, 2005; Kulbach, 2007). Since the efficiency 
of stress ribbon suspension bridges increases along with a 
rise in the number of spans, multi-span structures are fre-
quently employed (Troyano, 2003; Strasky, 2005; Sandovič, 
Juozapaitis, & Gribniak, 2017). Nowadays, in order to 
avoid unwanted vibrations, a variety of mechanical and 
hydraulical dampers and shock absorbers are applied for 
flexible and lightweight stress ribbon bridge structures 
(Bleicher, Schauer, Valtin, Raisch, & Schlaich, 2011). To 
increase the efficiency of suspension structures, composite 
materials started to be used for bearing components (Liu, 
Zwingmann, & Schlaich, 2016). The main disadvantage of 
stress ribbon structures is large horizontal bearing reac-
tions transmitted to the foundations, which often deter-
mines the cost of these structures (Schlaich et al., 2005; 
Kulbach, 2007; Karieta, 2010). At the end of the 20th 

century, to create the new forms and to extend the limits 
of applying stress ribbon bridges, these structures were 
started to be combined with other bearing components 
seeking to use them in the structures of combined bridges 
(Karieta, 2017). The stress ribbon through the steel arch 
structure is one of such combined structures. This con-
struction is specific because the arrangement of bearing 
components with opposing internal forces allows creating 
an equilibrium structure transmitting only vertical bear-
ing reactions to the foundations (Strasky, 2005, 2008; Ka-
rieta, 2010, 2017). However, not much information about 
the behaviour and rational parameters of the composite 
stress ribbon through steel arch structure is provided.

The paper describes the main components geometric 
parameters and their interdependencies of the combined 
stress ribbon through steel arch structure, presents a meth-
odology for balancing combined suspension through arch 
bridge structure, deals with analytical methods for putting 
together the bearing components of the composite bridge 
and considers rational component parameters.

1. Component parameters for  
the equilibrium structure 

In his book, J. Strasky was one of the first to describe the 
idea of arranging the equilibrium stress ribbon supported 
on arch structure presented in Figure 1. (Strasky, 2005). 
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The diagram in Figure 1 shows that the arch can be used 
as an intermediate support. At the initial stage, the stress 
ribbon component can be considered as the structure of 
two spans supported on the saddle in the middle (Fig-
ure 1b). The analysis of the arch is carried out by loading 
it with self-weight, the weight of the saddle components 
and the pressure transmitted by the tendons of the stress 
ribbon component (Figure 1c). Structural parameters and 
initial strains in the arch and suspension component can 
be selected such that the horizontal forces of these struc-
tures be identical (Ha = Hv). To uniform bearing reactions, 
struts can be used for combining the abutments of the 
stress ribbon component and the arch thus creating an 
equilibrium structure under vertical bearing reactions 
only (Figure 1d). 

For simulating a composite structure, the applica-
tion of digital methods is a complex and time-consuming 
task. This section provides a methodology for balancing 
the structure of the equilibrium suspension through arch 
bridge considering each particular case. The basic com-
ponent parameters of the stress ribbon through the arch 
structure are provided in Figure  2: La  – arch span; fa  – 
the rising part of the arch; Lb  – the loaded part of the 
arch (length of the stress ribbon saddle); Lv – the length 
of stress ribbon component; fv – a sag in the stress ribbon 
component; h  – the vertical distance between the sup-
ports; Sv, Sb, Sa  – the length of the geometric length of 
stress ribbon component, the saddle and the arch; βg – the 
tangent angle with a horizontal of the stress ribbon section 

of the bridge under permanent loads; α – the angle of the 
tilt of the bearing strut. 

Geometric parameters presented in Figure  2 can be 
divided into groups to distinguish the main variables:

 – Group 1. At the beginning of the arrangement, the 
initial parameters for the bridge La, fa, Lsum and h 
should be always known since they define the obsta-
cle the bridge must overcome.

 – Group 2. The initial parameters for the suspension 
part βg, i (%), fv describe suspension component sags 
usually limited by the needs of people with disabili-
ties. Based on these parameters, the sag of the sus-
pension component and its intermediate support, i.e. 
arch saddle, are determined.

 – Group 3. The main variable Lb. Since the previously 
discussed geometric parameters should be always 
known at the beginning of arrangement, changing 
the value of parameter Lb may assist in simultane-
ously adjusting the span of the suspension bridge and 
arch loading. The approximation method may help 
with balancing the bearing reactions of the main sus-
pension components.

The arrangement of the balanced geometry of the 
composite bridge takes place under permanent loads of 
bearing components, and therefore defining materials, 
the cross-sections of bearing components and calculation 
methods for estimating horizontal bearing reactions is a 
crucial point at the beginning of the conducted analysis. 

2. The arrangement of the stress  
ribbon bearing section 

In the general case, the bearing reactions of stress ribbon 
section should be calculated taking into account the in-
stallation of the suspension component, the material of the 
bearing component (cables, steel sheets), cross-sectional 
structure (using steel profiles or reinforced concrete), etc. 
Subject to the type of stress ribbon structure, calculation 
methods are selected. In order to discuss the rational 
component parameters for the composite bridge, the pa-
per presents the methodology for calculating the bearing 
reactions of the flexible single span cable, cross-sectional 
area and displacements under symmetrical loads. For cal-
culating suspension structures and for determining the 
cross-sectional area of the bearing component, it is neces-
sary to estimate the nonlinear behaviour of the bearing 
component. Thus, knowing the displacement of the bear-
ing component at each stage of construction and assess-
ing technology for construction and installation works are 
important points to be considered.

Figure 3 presents schemes for calculating the displace-
ment of the stress ribbon component where L  – span; 
f0 – the initial sag defining the initial geometry; ∆fgnk – 
displacement under permanent characteristic loads; ∆fvk – 
displacement under variable characteristic loads; fgk – sag 
under permanent characteristic loads; fgvk  – sag under 
permanent and variable characteristic loads; β – the tan-
gent angle of sag with a horizontal under permanent loads. 

Figure 1. A component scheme for suspension  
through arch bridge

Figure 2. The main parameters
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The horizontal bearing reaction of both the suspension 
structure and the cross-sectional area are directly subject 
to sag. The bigger is the sag, the weaker is the horizontal 
reaction. However, for designing footbridges, the sag of the 
current part is usually limited by a longitudinal gradient, 
which may reach 8% for stress ribbon suspension bridges 
(Schlaich et al., 2005). This gradient can be expressed in 
degrees, and then angle β = 4.574°. Based on this condi-
tion, the permissible sag can be expressed through its tan-
gent angle with horizontal ( )tg / 4gkf L= β⋅ . Thus, in this 
case, we can always know the value of the sag of the cur-
rent part at permanent loads under variations in its span.

Depending on the selected technology for installing a 
suspension structure (applying or omitting the strain of 
the bearing component), the cross-sectional area of the 
bearing component can be calculated thus selecting the 
initial geometric length of the component so that in each 
case sag should not exceed the condition of the allowable 
gradient of the current part and should meet requirements 
for the safety and appropriateness of the limit state. The 
cross-sectional area of the bearing component is selected 
according to the displacement of the bearing component 
under variable loads. The lower are limits on the displace-
ment of the bearing component under variable loads, the 
more rational cross-sectional area can be applied to the 
bearing component. As for the latest European design 
standards, footbridges are not limited, which extends ap-
plication limits on modern graceful structures. However, 
for designing footbridges, pedestrian comfort and techni-
cal-performance criteria must be taken into consideration. 
The cross-sectional area and displacement of the bearing 
component at various stages of construction can be calcu-
lated according to the following expressions. 

When structures or installation technology of the sus-
pension component allows strain on the bearing compo-
nent (Figure 3a), the initial sag of the suspension compo-
nent can be selected according to its sag under permanent 

loads (f0 = fgk). In this case, at constant loads, the bearing 
component will deform and shift at the value of ∆fgnk. In 
order to move back the bearing component to its original 
form, it is necessary to restore the initial state of the cross-
section internal force. Therefore, the suspension compo-
nent can be strained by the force equal to the horizontal 
bearing reaction at the initial stage (Ft = Hgk). Next, the 
structure is subjected by variable loads and shifts at the 
value of ∆fvk that depends on the selected cross-sectional 
area.

The displacement under characteristic variable loads 
is equal to: 
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where E  – Young’s modulus of the steel of the bearing 
component.

For designing a suspension structure with no strain, it 
is necessary to select the starting sag so that, under per-
manent loads, the suspension structure should shift at the 

Figure 3. Displacements of symmetrically loaded cable: a) applying technological strain; b) without technological strain
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value of ∆fgnk and form the shape satisfying the condition 
for the permissible gradient of the current section (Fig-
ure 3b). To meet the condition of the permissible gradient 
in this particular case, the displacement of the suspen-
sion structure must be relatively small. The cross-sectional 
area of the structures for such construction technology 
is selected according to expressions (1)–(4), though in 
this case coefficient k should be sufficiently high (>325). 
By applying higher values of coefficient k, a larger cross-
sectional area of the bearing component is preferred thus 
simultaneously reducing the elastic displacement of the 
suspension component and behavioural non-linearity as 
well as taking easier control over the displacement of the 
suspension component. 

The geometrical length of the suspension component 
under permanent characteristic loads is equal to: 

28
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The displacement of the suspension component under 
permanent characteristic loads equals to:
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The initial geometrical length of the suspension com-
ponent is equal to:

0 .gk gkS S S L− D = >  (7)

The initial sag of the suspension component under no 
strain equals to:
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It should be emphasized that the cross-sectional area of 
the bearing components of single-lane suspension struc-
tures is selected according to the condition for the appro-
priateness of the limit state. Nevertheless, due to the geo-
metrically nonlinear behaviour of suspension structures, 
this cross-sectional area will always meet the limit state of 
safety. Calculations according to expressions (1)–(8) show 
that the results are accurate and basically coincide with the 
results of the numerical geometrically nonlinear analysis. 
With reference to the expressions given, it is possible to 
determine the exact horizontal bearing reactions of the 
suspension component taking control over the displace-
ment of the suspension component and evaluating the 
actual weight of the suspension component of the bridge 
in each case. 

3. The arrangement of the arched section 

When the internal forces of the suspension section are 
known, it is possible to prepare a calculation scheme for 
the component of the arch and to estimate the horizon-
tal bearing reaction under permanent loads (Figure 1c). 
The internal force and behaviour of the arch can be de-
termined on the basis of the behaviour of the equivalent 
beam having the same geometric length and stiffness. In 
this case, the arch is the once-statically unresolved struc-

ture, and therefore bending stiffness EI of the arch has an 
effect on its displacement and internal stress. The hori-
zontal bearing reaction considering the bending stiffness 
of the arch can be defined as follows:
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where: Dfa  – vertical displacement of the centre of the 
arch, La – arch span, EI – bending stiffness of the arch, 

( )0  mM   – a bending moment in the arch examining an 
equivalent beam, fa – the rising part of the arch.

One of the main tasks of arch analysis is to determine 
parameters for the arch cross-section in order to precisely 
ascertain self-weight having a significant impact on the 
horizontal bearing reaction of the arch. To design the arch 
considering requirements for strength and stability, it is 
required to know its precise design length in the case of 
the various combinations of arch loading. The approxi-
mate design length of the arch of the combined bridge 
can be defined by taking into account arch displacement 
described by the diagram of the bending moments of the 
arch. The analysis of the arch shows that when the stress 
ribbon is placed on the arch, the bending moments of the 
arch are established. The values of the bending moments 
of the arch under permanent loads vary along with the 
component parameters of the combined bridge, but the 
positions of variations in the signs of the diagram of bend-
ing moments remain similar and correspond to Figure 4. 
Hence, with reference to Figure 4, the approximate design 
length of the arch leff is a higher value of geometric length 
S1 and S2.

4. Rational component parameters for the stress 
ribbon through steel arch equilibrium bridge

Calculations referring to formulas (1)–(9) and the scheme 
presented in Figure 2 show that each individual case pro-
vides a possibility of arranging the equilibrium structure 
of the combined bridge (when the bearing reactions of 
suspension and arched sections of the bridge are equal) 
(Figure 5). 

In order to determine the parameters and their inter-
dependencies of the combined steel equilibrium bridge, 
behavioural analysis due to permanent loads was per-
formed using the following initial data: arch span  – 
La  =  65.0  m; loads of the stress ribbon section of the 
bridge: g = 7.5 kN/m, v = 7.5 kN/m, γ = 1.0; stressed rib-
bon supports are at the same level (Figure 3). The small 
difference in horizontal bearing reactions is due to the 
vertical displacement of the arch, which should be taken 
into account in the detailed analysis of the bridge.

Figure 4. A diagram of the bending moments of the arch  
under permanent loads
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The analysis (using expressions (1)–(9)) of rational pa-
rameters for the combined bridge (when the horizontal re-
action of the stress ribbon component is equal to the hori-
zontal reaction of the arch) resulted in the diagram shown 
in Figure 6. The diagram illustrates variations in the length 
of the intermediate support (saddle) of the stress ribbon 
under changes in the rising part and weight of the arch. 

Arch flexibility:

/effl iλ = . (10)
The radius of the inertia of the arch cross-section:

/i I A= , (11)
where leff – the calculated length of the arch; I – the mo-
ment of inertia of the arch cross-section; A – the cross-
sectional area of the arch.

Figure 5. The bearing reactions of the nonlinear FEM analysis of the equilibrium composite structure:  
stress ribbon section 1770.6 kN; arched section 1752.1 kN

The arch is a curve which has a different radius than a 
curvature of the smooth part of the pedestrian path (with 
allowable gradients). The arched part of the saddle must 
properly support the stress ribbon section of the bridge. 
Increasing the cross-section of the arch leads to the ad-
ditional amount of steel in the edges of the saddle. For 
this reason, the right geometric shape of the arc should be 
chosen in each case (Figure 7).

With reference to Figure  6, the range of the rising 
parts of the rational steel arches of the bridge can be de-
termined. The presented diagram clearly shows the ef-
ficiency of extremely flat arches. While applying arches 
with low rising parts (fa  =  (1/16…1/15)La), the area of 
the arched saddle is very small. When the rising part of 
the arch makes (1/12)La, the length of the saddle is equal 
to 42–29% of the arch span, which is the approximate 
limit from which the geometric shapes of the arched and 
suspension sections start to differ significantly and the 
length of the part of the suspension section of the bridge 
decreases sharply. Thus, it can be stated that the effective 
range of the rising parts of the steel arches for combined 
footbridge is (1/16 ... 1/12) of the arch span. 

Conclusions

The proper selection of component parameters for the 
bearing components of stress ribbon through arch bridg-
es shows this structure can be balanced in such a way 
it should transfer only vertical bearing reactions to the 
foundations affected by loads (equilibrium structure is 
obtained).

The cross-sectional area of stress ribbon bearing com-
ponent is selected according to the condition for the ap-
propriateness of the limit state. The cross-sectional area 

Figure 6. The dependence of the length of the loaded part of the 
arch on the self-weight and the rising part of the arch when the 
horizontal bearing reaction of the stress ribbon structure is equal 
to the thrust of the arch (Hv = Ha). La – arch span, fa – rising part 
of the arch, Lb – the length of the intermediate support (saddle) 
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has been found will always meet requirements for the 
limit state of safety.

According to expressions (1)–(8), the calculation re-
sults of the suspension bearing component is sufficiently 
accurate and basically coincide with the numerically ob-
tained results of the geometrically nonlinear analysis. 
Based on the provided expressions, it is possible to deter-
mine the horizontal bearing reactions of the suspension 
bearing component taking control over the displacement 
of this component in each individual case.

In order to create an equilibrium structure of the com-
posite bridge, the main rational component parameters for 
the bridge arch have been determined. The rational range 
of the rising parts of the arched section varies from 1/16 
to 1/12 of the arch span.

Stress ribbon structures of bridges are rational in terms 
of the cost of materials, and therefore it is important to 
consider the advantages of the suspension section in the 
structures of combined bridges. However, a rise in the 
length of the suspension section simultaneously increases 
axial forces in both bearing components. Hence, for cre-
ating the analyzed structure, it is important to exclusively 
focus on selecting the geometric shape of the arch and, 
certainly, on its stability analysis.
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