Share:


Modification of the sickle insert of an internal gear pump

    Krzysztof Towarnicki Affiliation
    ; Algimantas Danilevičius Affiliation
    ; Šarūnas Šukevičius Affiliation

Abstract

The reduction of the weight of high-pressure components and systems (including hydraulic) is especially important in aircraft or mobile machinery. An interesting trend that began in the first half of the 20th century in the aviation industry is the weight reduction of structures by using components made of composite materials in place of those made of conventional materials. This trend is not only not diminishing, but is actually increasing year by year. This paper investigates the effect of modifying the design of the sickle insert on the volumetric efficiency of the pump. Moreover, this work presents the replacement of the sickle insert of an internal gear pump made of bronze with plastic materials, reducing its weight by 80%. To ensure similar performance, its design was modified, increasing the pump’s efficiency while additionally reducing its weight. This material substitution allows the reduction of weight, but it can adversely affect the performance of the hydraulic component, this also applies to the displacement pumps. For this reason, the design had to be changed to obtain similar operational parameters after changing the material.

Keyword : gear pump, capacity, internal gearing, sickle insert, hydraulics

How to Cite
Towarnicki, K., Danilevičius, A., & Šukevičius, Šarūnas. (2024). Modification of the sickle insert of an internal gear pump. Aviation, 28(1), 34–39. https://doi.org/10.3846/aviation.2024.20866
Published in Issue
Mar 19, 2024
Abstract Views
88
PDF Downloads
106
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Antoniak, P., Stosiak, M., & Towarnicki, K. (2019). Preliminary testing of the internal gear pump with modifications of the sickle insert. Acta Innovations, 32, 84–90. https://doi.org/10.32933/ActaInnovations.32.9

Galiński, C. (2016). Wybrane zagadnienia projektowania samolotów. Wydawnictwa Naukowe Instytutu Lotnictwa.

Gao, P., Yu, T., Zhang, Y., Wang, J., & Zhai, J. (2021). Vibration analysis and control technologies of hydraulic pipeline system in aircraft. Chinese Journal of Aeronautics, 34(4), 83–114. https://doi.org/10.1016/j.cja.2020.07.007

Karpenko, M. (2022). Landing gear failures connected with high-pressure hoses and analysis of trends in aircraft technical problems. Aviation, 26(3), 145–152. https://doi.org/10.3846/aviation.2022.17751

Lewis, E. B., & Cyndi, H. (2005). Selecting internal gear pump for difficult duties. World Pumps, 462, 26–27. https://doi.org/10.1016/S0262-1762(05)00514-6

Lubecki, M., Stosiak, M., Skačkauskas, P., Karpenko, M., Deptuła, A., & Urbanowicz, K. (2022). Development of composite hydraulic. Actuators, 11(12), Article 365. https://doi.org/10.3390/act11120365

Lubecki, M., Stosiak, M., Karpenko, M., Urbanowicz, K., Deptuła, A., & Cieślicki, R. (2023). Design and FEM analysis of plastic parts of a tie-rod composite hydraulic cylinder. Mechanika, 29(5), 358−362. https://doi.org/10.5755/j02.mech.31817

Marciniak, L., & Stryczek, J. (2014). Projekt koncepcyjny uniwersalnej pompy zębatej z wymiennymi podzespołami. Hydraulika i Pneumatyka, 2014(2), 9–11.

Mantovani, S. (2020). Feasibility analysis of a double-acting composite cylinder in high-pressure loading conditions for fluid power aplications. Applied Sciences 2020, 10(3), Article 826. https://doi.org/10.3390/app10030826

Novak, N., Trajkovski, A., Polajnar, M., Kalin, M., & Majdič, F. (2023). Wear of hydraulic pump with real particles and medium test dust. Wear, 532–533, Article 205101. https://doi.org/10.1016/j.wear.2023.205101

Osiński, P., Bury, P., & Noworolnik, W. (2016). Opracowanie metody wyznaczania charakterystyk sprawnościowych dla pomp wyporowych. Napęd i sterowanie, 2016(2), 131–136.

Osiński, P., Huss, W., Bury, P., & Kiec, K. (2018). Research on thermal power in the 3PZ4 gear pump. Drive and Control, 2018(3), 110–114.

Osiński, P., Stosiak, M., Bury, P., Cieślicki, R., Towarnicki, K., & Antoniak, P. (2021). Development tendencies of clearance compensation methods in internal gear pumps. MATEC Web of Conferences, 338, Article 01021. https://doi.org/10.1051/matecconf/202133801021

Rundo, M. (2017). Theoretical flow rate in crescent pumps. Simulation Modelling Practice and Theory, 71, 1–14. https://doi.org/10.1016/j.simpat.2016.11.001

Scholz, S., & Kroll, L. (2014). Nanocomposite glide surfaces for FRP hydraulic cylinders – Evaluation and test. Composites: Part B, 61, 207–213. https://doi.org/10.1016/j.compositesb.2014.01.044

Stryczek, J., Bednarczyk, S., & Biernacki, K. (2014). Gerotor pump with POM gears: Design, production technology, research. Archives of Civil and Mechanical Engineering, 14(3), 391–397. https://doi.org/10.1016/j.acme.2013.12.008

Stryczek, J., Banaś, M., Krawczyk, J., Marciniak, L., & Stryczek, P. (2017). The fluid power elements and systems made of plastics. Procedia Engineering, 176, 600–609. https://doi.org/10.1016/j.proeng.2017.02.303

Świtalski, P. (2009). Technika Pompowa. Cedos.

Towarnicki, K., Stosiak, M., & Antoniak, P. (2021). Pompa wyporowa o zazębieniu wewnętrznym z kompensacją luzów promieniowych (Patent PL239914). https://patents.google.com/patent/PL239914B1/pl?oq=PL239914

Towarnicki, K., Stosiak, M., Lesniewski, T., Deptuła, A., Urbanowicz, K., & Śliwiński, P. (2023). Friction resistances in a prototype internal gear pump with sickle insert made of plastic. In O. Prentkovskis, I. Yatskiv (Jackiva), P. Skačkauskas, P. Maruschak, & M. Karpenko (Eds), TRANSBALTICA XIII: Transportation Science and Technology. TRANSBALTICA 22. Lecture Notes in Intelligent Transportation and Infrastructure (pp. 268–276). Springer. https://doi.org/10.1007/978-3-031-25863-3_25