A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty

    Seyed Meysam Mousavi Affiliation
    ; Jurgita Antuchevičienė Affiliation
    ; Edmundas Kazimieras Zavadskas Affiliation
    ; Behnam Vahdani Affiliation
    ; Hassan Hashemi Affiliation


Cross-dock has been a novel logistic approach to effectively consolidate and distribute multiple products in logistics networks. Location selection of cross-docking centers is a decision problem under different conflicting criteria. The decision has a vital part in the strategic design of distribution networks in logistics management. Conventional methods for the location selection of cross-docking centers are insufficient for handling uncertainties in Decision-Makers (DMs) or experts’ opinions. This study presents a modern Multi-Criteria Group Decision-Making (MCGDM) model, which applies the concept of compromise solution under uncertainty. To address uncertainty, Interval-Valued Intuitionistic Fuzzy (IVIF) sets are used. In this paper, first an IVIF-weighted arithmetic averaging (IVIF-WAA) operator is used in order to aggregate all IVIF-decision matrices, which were made by a team of the DMs into final IVIF-decision matrix. Then, a new Collective Index (CI) is developed that simultaneously regards distances of cross-docking centers as candidates from the IVIF-ideal points. Finally, the feasibility and practicability of proposed MCGDM model is illustrated with an application example on location choices of cross-docking centers to the logistics network design.

Keyword : multiple cross-docks, location evaluation and selection, logistics networks, multi-criteria decision-making, group decision process, interval-valued intuitionistic fuzzy sets

How to Cite
Mousavi, S. M., Antuchevičienė, J., Zavadskas, E. K., Vahdani, B., & Hashemi, H. (2019). A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty. Transport, 34(1), 30-40.
Published in Issue
Jan 15, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Alkhedher, M. J. E. J. 2006. Dock Design for Automated Cross-Docking Container Terminal: PhD Thesis. Purdue University, West Lafayette, IN, US. 194 p. Available from Internet:

Atanassov, K. T. 1986. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1): 87–96.

Atanassov, K. T. 1994. Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 64(2): 159–174.

Atanassov, K. T.; Gargov, G. 1989. Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31(3): 343–349.

Bartholdi, J. J.; Gue, K. R. 2004. The best shape for a crossdock, Transportation Science 38(2): 235–244.

Chen, C.-T. 2000. Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems 114(1): 1–9.

Chen, S.-J.; Hwang, C.-L. 1992. Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag Berlin Heidelberg. 536 p.

Chen, T.-Y. 2016. An IVIF-ELECTRE outranking method for multiple criteria decision-making with interval-valued intuitionistic fuzzy sets, Technological and Economical Development of Economy 23(3): 416–452.

Chen, T.-Y. 2015. IVIF-PROMETHEE outranking methods for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets, Fuzzy Optimization and Decision Making 14(2): 173–198.

Demirel, T.; Demirel, N. Ç.; Kahraman, C. 2010. Multi-criteria warehouse location selection using Choquet integral, Expert Systems with Applications 37(5): 3943–3952.

Hashemi, H.; Bazargan, J.; Mousavi, S. M.; Vahdani, B. 2014. An extended compromise ratio model with an application to reservoir flood control operation under an interval-valued intuitionistic fuzzy environment, Applied Mathematical Modelling 38(14): 3495–3511.

Hashemi, S. S.; Razavi Hajiagha, S. H.; Zavadskas, E. K.; Mahdiraji, H. A. 2016. Multicriteria group decision making with ELECTRE III method based on interval-valued intuitionistic fuzzy information, Applied Mathematical Modelling 40(2): 1554–1564.

Hwang, C.-L.; Yoon, K. 1981. Multiple Attribute Decision Making. Methods and Applications: a State-of-the-Art Survey. Springer-Verlag Berlin Heidelberg. 269 p.

Jayaraman, V.; Ross, A. 2003. A simulated annealing methodology to distribution network design and management, European Journal of Operational Research 144(3): 629–645.

Kahraman, C.; Keshavarz Ghorabaee, M.; Zavadskas, E. K.; Onar, S.C; Yazdani, M.; Oztaysi, B. 2017. Intuitionistic fuzzy EDAS method: an application to solid waste disposal site selection, Journal of Environmental Engineering and Landscape Management 25(1): 1–12.

Kellar, G. M.; Polak, G. G.; Zhang, X. 2016. Synchronization, cross-docking, and decoupling in supply chain networks, International Journal of Production Research 54(9): 2585–2599.

Khalaj, M. R.; Modarres, M.; Tavakkoli-Moghaddam, R. 2014. Designing a multi-echelon supply chain network: a car manufacturer case study, Journal of Intelligent & Fuzzy Systems 27(6): 2897–2914.

Ladier, A.-L.; Alpan, G. 2016. Cross-docking operations: current research versus industry practice, Omega 62: 145–162.

Lee, H.-S. 2005. A fuzzy multi-criteria decision making model for the selection of the distribution center, Lecture Notes in Computer Science 3612: 1290–1299.

Li, Y.; Liu, P.; Chen, Y. 2016. Some single valued neutrosophic number Heronian mean operators and their application in multiple attribute group decision making, Informatica 27(1): 85–110.

Liu, P. 2016. Special issue “Intuitionistic fuzzy theory and its application in economy, technology and management”, Technological and Economic Development of Economy 22(3): 327–335.

Liu, P.; Li, Y.; Antuchevičienė, J. 2016. Multi-criteria decision-making method based on intuitionistic trapezoidal fuzzy prioritised OWA operator, Technological and Economic Development of Economy 22(3): 453–469.

Maknoon, M. Y.; Soumis, F.; Baptiste, P. 2016. Optimizing transshipment workloads in less-than-truckload cross-docks, International Journal of Production Economics 179: 90–100.

Makui, A.; Haerian, L.; Eftekhar, M. 2006. Designing a multiobjective nonlinear cross-docking location allocation model using genetic algorithm, Journal of Industrial Engineering International 2(3): 27–42.

Mousavi, S. M.; Tavakkoli-Moghaddam, R.; Siadat, A. 2014a. Optimally design of the cross-docking in distribution networks: heuristic solution approach, International Journal of Engineering: Transactions A: Basics 27(4): 533–544.

Mousavi, S. M.; Vahdani, B. 2017. A robust approach to multiple vehicle location-routing problems with time windows for optimization of cross-docking under uncertainty, Journal of Intelligent & Fuzzy Systems 32(1): 49–62.

Mousavi, S. M.; Vahdani, B.; Tavakkoli-Moghaddam, R.; Hashemi, H. 2014b. Location of cross-docking centers and vehicle routing scheduling under uncertainty: a fuzzy possibilistic-stochastic programming model, Applied Mathematical Modelling 38(7–8): 2249–2264.

Ou, C.-W.; Chou, S.-Y. 2009. International distribution center selection from a foreign market perspective using a weighted fuzzy factor rating system, Expert Systems with Applications 36(2): 1773–1782.

Özcan, T.; Çelebi, N.; Esnaf, Ş. 2011. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem, Expert Systems with Applications 38(8): 9773–9779.

Park, J. H.; Park, I. Y.; Kwun, Y. C.; Tan, X. 2011. Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment, Applied Mathematical Modelling 35(5): 2544–2556.

Prentkovskis, O.; Erceg, Ž.; Stević, Ž.; Tanackov, I.; Vasiljević, M.; Gavranović, M. 2018. A new methodology for improving service quality measurement: Delphi-FUCOM-SERVQUAL model, Symmetry 10(12): 757.

Ratliff, H. D.; Donadlson, H.; Johnson, E.; Zhang, M. 1998. Schedule-Driven Cross-Docking Network. Technical Report. Georgia Institute of Technology, GA, US.

Razavi Hajiagha, S. H.; Hashemi, S. S.; Zavadskas, E. K. 2013. A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment, Technological and Economical Development of Economy 19(1): 22–37.

Razavi Hajiagha, S. H.; Mandiraji, H. A.; Hashemi, S. S.; Zavadskas, E. K. 2015. Evolving a linear programming technique for MAGDM problems with interval valued intuitionistic fuzzy information, Expert Systems with Applications 42(23): 9318–9325.

Rong, L.; Liu, P.; Chu, Y. 2016. Multiple attribute group decision making methods based on intuitionistic fuzzy generalized Hamacher aggregation operator, Economic Computation and Economic Cybernetics Studies and Research 50(2): 211–230.

Ross, A.; Jayaraman, V. 2008. An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design, Computers & Industrial Engineering 55(1): 64–79.

Stević, Ž.; Pamučar, D.; Zavadskas, E. K.; Ćirović, G.; Prentkovskis, O. 2017. The selection of wagons for the internal transport of a logistics company: a novel approach based on rough BWM and rough SAW methods, Symmetry 9(11): 264.

Vlachopoulou, M.; Silleos, G.; Manthou, V. 2001. Geographic information systems in warehouse site selection decisions, International Journal of Production Economics 71(1–3): 205–212.

Wei, G.; Wang, X. 2007. Some geometric aggregation operators based on interval-valued intuitionistic fuzzy sets and their application to group decision making, in 2007 International Conference on Computational Intelligence and Security (CIS 2007), 15–19 December 2007, Harbin, China, 495–499.

Xu, Z. 2007a. Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control and Decision 22(2): 215–219.

Xu, Z. 2007b. Multi-person multi-attribute decision making models under intuitionistic fuzzy environment, Fuzzy Opti mization and Decision Making 6(3): 221–236.

Xu, Z.-S.; Chen, J. 2007. Approach to group decision making based on interval-valued intuitionistic judgment matrices, Systems Engineering – Theory & Practice 27(4): 126–133.

Xue, Y.-X.; You, J.-X.; Lai, X.-D.; Liu, H.-C. 2016. An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information, Applied Soft Computing 38: 703–713.

Yan, H.; Tang, S.-L. 2009. Pre-distribution and post-distribution cross-docking operations, Transportation Research Part E: Logistics and Transportation Review 45(6): 843–859.

Yu, D.; Wu, Y.; Lu, T. 2012. Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making, Knowledge-Based Systems 30: 57–66.

Zadeh, L. A. 1965. Fuzzy sets, Information and Control 8(3): 338–353.

Zavadskas, E. K.; Antuchevičienė, J.; Razavi Hajiagha, S. H.; Hashemi, S. S. 2014. Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF), Applied Soft Computing 24: 1013–1021.

Zavadskas, E. K.; Antuchevičienė, J.; Razavi Hajiagha, S. H.; Hashemi, S. S. 2015. The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering, Mathematical Problems in Engineering 2015: 560690.

Zavadskas, E. K.; Nunić, Z.; Stjepanović, Ž.; Prentkovskis, O. 2018a. A novel rough range of value method (R-ROV) for selecting automatically guided vehicles (AGVs), Studies in Informatics and Control 27(4): 385–394.

Zavadskas, E. K.; Stević, Ž.; Tanackov, I.; Prentkovskis, O. 2018b. A novel multicriteria approach – rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics, Studies in Informatics and Control 27(1): 97–106.