Comparative studies of the biodiesel fuel jet development dynamics in common rail and conventional design fuel systems


The results of comparative diesel and biodiesel (Rapeseed oil Methyl Ester (RME) and Rapeseed Oil (RO)) fuel jet structure studies by optical scanning method are presented. There is an interrelation between the dynamics of fuel jet development by the Common Rail (CR) with single-phase injection and Conventional Design System (CDS) and the parameters of mixture formation, which are typical for transferring the operation of the Diesel Engine (DE) from mineral diesel to RME and RO. The structure of the Diesel Fuel (DF) jet is significantly more heterogeneous by the size and number of droplets in CDS in comparison with CR. From the moment of the injection the presence of zones less saturated with fuel contributes to a relatively short induction period – 5° ca. compared to 11…12° ca. in the CR system. Using RME in the CR system in comparison with DF, increases the heterogeneity of the fuel jet, thereby causing a shorter (by 1…2° ca.) induction period in the whole investigated range of injection pressures of 60…160 MPa. The injection of a non-heated RO is accompanied by the shape and structure fluctuations of the fuel jet. RO heating to 65 °C stabilizes the structure of the jet and increases the share of less saturated zones. Promising way of use for the optical scanning method in the mathematical modelling of the DE working process is proposed.

Keyword : diesel engine, common rail, conventional design system, fuel system, fuel jet structure, rapeseed oil methyl ester, rapeseed oil

How to Cite
Kulmanakov, S. P., Lebedevas, S., Kulmanakov, S. S., Lazareva, N., & Rapalis, P. (2019). Comparative studies of the biodiesel fuel jet development dynamics in common rail and conventional design fuel systems. Transport, 34(1), 67-74.
Published in Issue
Jan 31, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Ashgriz, N. 2011. Handbook of Atomization and Sprays: Theory and Applications. Springer US. 935 p.

Barradas Filho, A. O.; Barros, A. K. D.; Labidi, S.; Viegas I. M. A.; Marques, D. B.; Romariz, A. R. S.; De Sousa, R. M.; Marques, A. L. B.; Marques, E. P. 2015. Application of artificial neural networks to predict viscosity, iodine value and induction period of biodiesel focused on the study of oxidative stability, Fuel 145: 127–135.

Baumgarten, C. 2006. Mixture Formation in Internal Combustion Engines. Springer-Verlag Berlin Heidelberg. 294 p.

Dos Santos, F.; Le Moyn, L. 2011. Spray atomization models in engine applications, from correlations to direct numerical simulations, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66(5): 801–822.

EC. 2005. Communication from the Commission: Biomass Action Plan. COM(2005) 628 final. 7.12.2005. Brussels. 47 p. Available from Internet:

EC. 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. 47 p. Available from Internet:

EC. 2011. White Paper: Roadmap to a Single European Transport Area – Towards a Competitive and Resource Efficient Transport System. COM(2011) 144 final. 28.3.2011, Brussels. Available from Internet:

EN 14214:2009. Automotive Fuels. Fatty Acid Methyl Esters (FAME) for Diesel Engines. Requirements and Test Methods.

Es’kov, A. V.; Gibel’gauz, S. I. 2011. Laboratornyj praktikum. Issledovanie dinamiki razvitiya strui raspylennogo dizel’nogotopliva. Barnaul. 36 s. (in Russian).

Es’kov, A. V.; Kulmanakov, S. P.; Sagalakov, A. M.; Maeckij, A. V.; Kiryushin, I. I. 2014. Issledovanie processov smeseobrazovaniya v dizele s primeneniem opticheskogo kontrolya kachestva raspylivaniya topliva, Vestnik Altajskoj nauki (1): 287–291 (in Russian).

GOST R 52368-2005 (EN 590:2009). Toplivo dizel’noe EVRO. Tehnicheskie usloviya [Diesel Fuel EURO. Specifications] (in Russian).

GOST R 53457-2009. Maslo rapsovoe. Tehnicheskie usloviya [Rapeseed Oil. Specifications] (in Russian).

Hansen, U.; Strenziok, R.; Schröder, T. 1997. Demonstration project for the use of rape methyl ester in ecologically sensitive aquatic areas, P. Chartier, G. L Ferrero, U. M Henius, S. Hultberg, J. Sachau, M. Wiinblad (Eds.). Biomass for Energy and the Environment, 1707–1712.

Hiroyasu, H. 1985. Diesel engine combustion and its modeling, in COMODIA 1985: the 1st International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 4–6 September 1985, Tokyo, Japan, 53–75.

Kegl, B.; Kegl, M.; Pehan, S. 2008. Optimization of a Fuel Injection System for Diesel and Biodiesel Usage, Energy & Fuels 22(2): 1046–1054.

Kerker, M. 1969. The Scattering of Light and Other Electromagnetic Radiation. Academic Press. 688 p.

Klyus, O.; Labeckas, G.; Slavinskas, S.; Mažeika, M. 2013. Raspredelenie kapel’ v processe raspylivaniya dizel’nogo topliva i ego smesi s biokomponentami, Scientific Journals of The Maritime University of Szczecin 108(36.2): 93–97. (in Russian).

Klyus, O.; Zamiatina, N. 2017. Residual fuel atomization process simulation, Combustion Engines 169(2): 108–112.

Kolade, B.; Morel, T.; Kong, S. 2004. Coupled 1-D/3-D analysis of fuel injection and diesel engine combustion, SAE Technical Paper 2004-01-0928.

Krause, P.; Klyus, O. 2013. Ispol’zovanie parametra poverhnostnogo natyazheniya dlya ocenki processa raspylivaniya topliva v dizelyah, Scientific Journals of the Maritime University of Szczecin 36(108) 2: 98–101. (in Russian).

Kuleshov, A. S. 2004. Programma rascheta i optimizacii dvigatelej vnutrennego sgoraniya DIZEL’-RK. Opisanie matematicheskih modelej, reshenie optimizacionnyh zadach. MGTU im. N. Je. Baumana, Rossiya. 123 s. (in Russian).

Kulmankov, S. P.; Lebedevas, S.; Sinitsyn, V.; Lebedeva, G.; Kulmankov, S. S.; Yakovlev, S. 2016. The influence of the fuel spray structure and dynamics of its formation on surface combustion of biofuels in diesel engines, Transport 31(1): 84–93.

Kulmanakov, S. P.; Matievskij, D. D.; Balashov, A. I.; Lebedevas, S. V. 2009. Perspektivnye smesevye kislorodosoderzhashhie topliva, Polzunovskij vestnik (1–2): 17–21 (in Russian).

Kulmanakov, S. P.; Sinicyn, V. A.; Drobyshev, O. V. 2012. Issledovanie struktury i dinamiki razvitiya toplivnoj strui dlya tradicionnogo i biotopliva pri ispol’zovanii razlichnyh sistem toplivopodachi, Dvigateli vnutrennego sgoraniya (1): 13–18 (in Russian).

Labeckas, G.; Slavinskas, S. 2009. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends, Energy Conversion and Management 50(3): 792–801.

Lebedevas, S.; Vaicekauskas, A.; Lebedeva, G.; Kulmanakov, S. P.; Shashev, S. 2006a. The change of operational characteristics of diesel engines running on RME biodiesel. Parameters of thrust and fuel economy, in Transport Means 2006: Proceedings of the 10th International Conference, 19–20 October 2006, Kaunas, Lithuania, 229–233.

Lebedevas, S.; Vaicekauskas, A.; Lebedeva, G.; Matijevskij, D.; Kulmanakov, S. 2006b. The change of operational characteristics of diesel engines running on RME biodiesel. Emission of exhaust gases, in Transport Means 2006: Proceedings of the 10th International Conference, 19–20 October 2006, Kaunas, Lithuania, 161–166.

Lebedevas, S.; Lebedeva, G.; Žaglinskis, J.; Rapalis, P.; Gudaitytė, I. 2013. Research of characteristics of working cycle of highspeed diesel engine operating on biofuels RME–E and D–RME–E. Part 2. Indicators and characteristics of heat release in diesel cylinder, Transport 28(3): 217–223.

Lefebvre, A. H.; McDonell, V. G. 2017. Atomization and Sprays. CRC Press. 300 p.

Lewińska, J.; Kapusta, Ł. J. 2017. Analysis of the microstructure of the fuel spray atomized by marine injector, Combustion Engines 169(2): 120–124.

Li, B.; Li, Y.; Liu, H.; Liu, F.; Wang, Z.; Wang, J. 2017. Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends, Applied Energy 206: 425–431.

Li, T.; Nishida, K.; Hiroyasu, H. 2011. Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer, Fuel 90(7): 2367–2376.

Linne, M. 2013. Imaging in the optically dense regions of a spray: a review of developing techniques, Progress in Energy and Combustion Science 39(5): 403–440.

Linne, M.; Paciaroni, M.; Hall, T.; Parker, T. 2006. Ballistic imaging of the near field in a diesel spray, Experiments in Fluids 40(6): 836–846.

Lyshevskij, A. S. 1971. Raspylivanie topliva v sudovyh dizelyah. Leningrad: Sudostroenie. 248 s. (in Russian).

Lyshevskij, A. S. 1981. Sistemy pitaniya dizelej. Moskva: Mashinostroenie. 216 s. (in Russian).

Ma, F.; Zhao, C.; Zhang, F.; Zhao, Z.; Zhang, Z.; Xie, Z.; Wang, H. 2015. An experimental investigation on the combustion and heat release characteristics of an opposed-piston foldedcranktrain diesel engine, Energies 8(7): 6365–6381.

Marchenko, A. P.; Minak, A. F.; Semenov, V. G.; Lin’kov, O. Yu.; Shpakovskij V. V.; Oboznyj, S. V. 2005. Raschetnojeksperimental’nye issledovaniya po ocenke vlijaniya podogreva al’ternativnyh topliv na pokazateli raboty dizelya, Dvigateli vnutrennego sgoraniya (1): 8–17 (in Russian).

Markov, V. A.; Devyanin, S. N.; Bykovskaya, L. I. 2013. Optimizaciya sostava mnogokomponentnyh smesevyh biotopliv dlya dizel’nyh dvigatelej sel’skohozyajstvennyh mashin, Izvestiya vysshih uchebnyh zavedenij: Mashinostroenie (12): 51–63 (in Russian).

Markov, V. A.; Devyanin, S. N.; Semenov, V. G.; Shahov, A. V.; Bagrov, V. V. 2011. Ispol’zovanie rastitel’nyh masel i topliv na ih osnove v dizel’nyh dvigatelyah. OOO NIC Inzhener, Rossiya. 536 s. (in Russian).

Mollenhauer, K.; Tschöke, H. 2010. Handbook of Diesel Engines. Springer-Verlag Berlin Heidelberg. 636 p.

Pastor, J. V.; Payri, R.; Salavert, J. M.; Manin, J. 2012. Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray, International Journal of Automotive Technology 13(5): 713–724.

Pimentel, R. G. 2006. Measurement and Prediction of Droplet Size Distribution in Sprays. PhD Thesis. Laval University, Canada. 305 p.

Reitz, R. D.; Duraisamy, G. 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines, Progress in Energy and Combustion Science 46: 12–71.

Sedarsky, D.; Gord, J.; Carter, C.; Meyer, T.; Linne, M. 2009. Fastframing ballistic imaging of velocity in an aerated spray, Optics Letters 34(18): 2748–2750.

Van de Hulst, H. C. 1981. Light Scattering by Small Particles. Dover Publications. 496 p.

Wang, L.; Badra, J. A.; Roberts, W. L.; Fang, T. 2017. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels, Fuel 190: 113–128.

Zel’dovich, Ya. B.; Barentblatt, G. I.; Mahviladze, G. M. 1980. Matematicheskaya teoriya goreniya i vzryva. Moskva: Nauka. 480 s. (in Russian).

Zhosan, A. A.; Ryzhov, Yu. N.; Kurochkin, A. A. 2012. Vprysk i gorenie rapsovogo masla i dizel’nogo topliva v sovremennyh dizelyah, Vestnik Orel GAU 1(12): 130–132 (in Russian).