Modelling solutions for cost optimization in multimodal transports considering the operational risk variables

    Catalin Popa Info
    Ovidiu Stefanov Info
    Rima Mickienė Info
DOI: https://doi.org/10.3846/transport.2025.25716

Abstract

The general risk assessment usually has the potential of setting a viable ground for pursuing a complex mathematical model based on an objective function, defined by several variables and constraints, which can be further applied for the specific analysis of multimodal transport. In order to assess the operational risks in multimodal transports, the authors have formulated an objective function with the aim of minimizes the sum of total cost of transportation on route components depending on the risk variables, respectively for road, maritime and railway subsystems of multimodal transport, in different combinatorial perspectives. The main objective of this study is to provide a method to value the overall risk assessment based on the defined objective function, considering both the variables that may influence the cost effectiveness and the relevant probabilities for each route component of multimodal transport. In this perspective, the authors have sought to provide practical solutions for decision-making process in multimodal routing, to optimize the costs on different routes and to contribute for decision-making process in routing and transports mode selection. The main contribution is residing from the novelty of decision-making process approach, considering the risk variables in different combination, facile to be applied professional in multimodal transportation in routing process, when risks are to be considered as significant for process reliability.

First published online 19 January 2026

 

Keywords:

risk management, multimodal transport, modelling, transport cost, cost optimization, objective function, route selection

How to Cite

Popa, C., Stefanov, O., & Mickienė, R. (2025). Modelling solutions for cost optimization in multimodal transports considering the operational risk variables. Transport, 40(3), 249–259. https://doi.org/10.3846/transport.2025.25716

Share

Published in Issue
December 31, 2025
Abstract Views
179

References

AGCS. 2022. Safety and Shipping Review 2022: an Annual Review of Trends and Developments in Shipping Losses and Safety, Allianz Global Corporate & Specialty (AGCS), Munich, Germany. Available from Internet: https://commercial.allianz.com/content/dam/onemarketing/commercial/commercial/reports/AGCS-Safety-Shipping-Review-2022.pdf

Asariotis, R.; Bull, H.-J.; Clarke M. A.; Herber, R.; Kiantou-Pampouk, A.; Morán-Bovio, D.; Ramberg, J.; De Wit, R.; Zunarelli, S. 2019. Intermodal Transportation and Carrier Liability. Office for Official Publications of the European Communities, Luxembourg. 48 p. Available from Internet: https://op.europa.eu/en/publication-detail/-/publication/bd8d755b-993c-4b40-ab2c-715e88b5dd15/language-en

Basallo-Triana, M. J.; Vidal-Holguín, C. J.; Bravo-Bastidas, J. J. 2021. Planning and design of intermodal hub networks: a literature review, Computers & Operations Research 136: 105469. https://doi.org/10.1016/j.cor.2021.105469

Bandyopadhyay, A.; Bhatnagar, S. 2023. Impact of COVID-19 on ports, multimodal logistics and transport sector in India: responses and policy imperatives, Transport Policy 130: 15–25. https://doi.org/10.1016/j.tranpol.2022.10.014

Barnhart, C.; Ratliff, H. D. 1993. Modelling Intermodal Routing, Journal of Business Logistics 14(1): 205–223.

Batarlienė, N. 2020. Essential safety factors for the transport of dangerous goods by road: a case study of Lithuania, Sustainability 12(12): 4954. https://doi.org/10.3390/su12124954

Beresford, A. K. C.; Banomyong, R.; Pettit, S. 2021. A critical review of a holistic model used for assessing multimodal transport systems, Logistics 5(1): 11. https://doi.org/10.3390/logistics5010011

Bubbico, R.; Di Cave, S.; Mazzarotta, B. 2004. Risk analysis for road and rail transport of hazardous materials: a simplified approach, Journal of Loss Prevention in the Process Industries 17(6): 477–482. https://doi.org/10.1016/j.jlp.2004.08.010

Bula, G. A.; Prodhon, C.; Gonzalez, F. A.; Murat Afsar, H.; Velasco, N. 2017. Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation, Journal of Hazardous Materials 324: 472–480. https://doi.org/10.1016/j.jhazmat.2016.11.015

Bydlinski, P. 1997. Multimodaler transport, in J. Basedow et al. (Eds.). Münchener Kommentar zum Handelsgesetzbuch 7: 356–388. (in German).

Caramia, M.; Giordani, S. 2009. A new approach for scheduling independent tasks with multiple modes, Journal of Heuristics 15: 313–329. https://doi.org/10.1007/s10732-007-9062-y

Cieśla, M.; Mrówczyńska, B.; Opasiak, T. 2017. Multimodal transport risk assessment with risk mapping, Scientific Papers of Silesian University of Technology – Organization and Management Series 105: 31–39.

Chang, T.-S. 2008. Best routes selection in international intermodal networks, Computers & Operations Research 35(9): 2877–2891. https://doi.org/10.1016/j.cor.2006.12.025

Cherednichenko, K.; Ivannikova, V.; Sokolova, O.; Yanchuk, M. 2023. Model of transport safety assessment in multimodal transportation systems, Transport 38(4): 204–213. https://doi.org/10.3846/transport.2023.20865

Cherradi, G.; Bouziri, A. E.; Boulmakoul, A.; Zeitouni, K. 2017. Real-time microservices based environmental sensors system for hazmat transportation networks monitoring, Transportation Research Procedia 27: 873–880. https://doi.org/10.1016/j.trpro.2017.12.087

De Witt, W.; Clinger, J. 2000. Intermodal freight transportation, in Transportation in the New Millennium, January 2000, Transportation Research Board Standing Committees, Washington, DC, US, 1–6. Available from Internet: https://onlinepubs.trb.org/onlinepubs/millennium/00061.pdf

Di Francesco, D.; Girolami, M.; Duncan, A. B.; Chryssanthopoulos, M. 2022. A probabilistic model for quantifying uncertainty in the failure assessment diagram, Structural Safety 99: 102262. https://doi.org/10.1016/j.strusafe.2022.102262

EMSA. 2024. EMSA Facts & Figures 2023. European Maritime Safety Agency (EMSA), Lisbon, Portugal. 53 p. Available from Internet: https://www.emsa.europa.eu/publications/item/5176-emsa-facts-figures-2023.html

Erkut, E.; Gzara, J. 2008. Solving the hazmat transport network design problem, Computers & Operations Research 35(7): 2234–2247. https://doi.org/10.1016/j.cor.2006.10.022

Fang, X.; Cao, C.; Chen, Z.; Chen, W.; Ni, L.; Ji, Z.; Gan, J. 2020. Using mixed methods to design service quality evaluation indicator system of railway container multimodal transport, Science Progress 103(1): 1–27. https://doi.org/10.1177/0036850419890491

Glickman, T. S.; Erkut, E.; Zschocke, M. S. 2007. The cost and risk impacts of rerouting railroad shipments of hazardous materials, Accident Analysis & Prevention 39(5): 1015–1025. https://doi.org/10.1016/j.aap.2007.01.006

Guo, J.; Luo, C. 2022. Risk assessment of hazardous materials transportation: a review of research progress in the last thirty years, Journal of Traffic and Transportation Engineering (English Edition) 9(4): 571–590. https://doi.org/10.1016/j.jtte.2022.01.004

Guo, J.; Xu, J.; He, Z.; Liao, W. 2021. Research on risk propagation method of multimodal transport network under uncertainty, Physica A: Statistical Mechanics and its Applications 563: 125494. https://doi.org/10.1016/j.physa.2020.125494

Guo, X.; Verma, M. 2010. Choosing vehicle capacity to minimize risk for transporting flammable materials, Journal of Loss Prevention in the Process Industries 23(2): 220–225. https://doi.org/10.1016/j.jlp.2009.07.007

Hoogendoorn-Lanser, S.; Van Nes, R.; Hoogendoorn, S. P. 2006. Modeling transfers in multimodal trips: explaining correlations, Transportation Research Record: Journal of the Transportation Research Board 1985: 144–153. https://doi.org/10.1177/0361198106198500116

Huang, H.; Han, C.; Xu, G.; Jiang, M.; Wong, S. C.; Haque, M. 2020. Incorporating safety reliability into route choice model: Heterogeneous crash risk aversions, Analytic Methods in Accident Research 25: 100112. https://doi.org/10.1016/j.amar.2020.100112

Kaewfak, K.; Pharino, C.; Ouppara, N. 2024. Advanced analytical methods for risk mitigation in multimodal freight transport, Symmetry 16(10): 1394. https://doi.org/10.3390/sym16101394

Kukulski, J.; Lewczuk, K.; Góra, I.; Wasiak, M. 2023. Methodological aspects of risk mapping in multimode transport systems, Eksploatacja i Niezawodność – Maintenance and Reliability 25(1): 19. http://doi.org/10.17531/ein.2023.1.19

Li, L.; Zhang, Q.; Zhang, T.; Zou, Y.; Zhao, X. 2023. Optimum route and transport mode selection of multimodal transport with time window under uncertain conditions, Mathematics 11(14): 3244. https://doi.org/10.3390/math11143244

Liu, H.; Song, G.; Liu, T.; Guo, B. 2022. Multitask emergency logistics planning under multimodal transportation, Mathematics 10(19): 3624. https://doi.org/10.3390/math10193624

Miller, H. J.; Shaw, S.-L. 2021. Geographic Information Systems for Transportation: Principles and Applications. Oxford University Press. 480 p. https://doi.org/10.1093/oso/9780195123944.001.0001

Min, H. 1991. International intermodal choices via chance-constrained goal programming, Transportation Research Part A: General 25(6): 351–362. https://doi.org/10.1016/0191-2607(91)90013-G

Miziuła, P.; Navarro, J. 2019. Birnbaum importance measure for reliability systems with dependent components, IEEE Transactions on Reliability 68(2): 439–450. https://doi.org/10.1109/TR.2019.2895400

Mou, J.; Jia, X.; Chen, P.; Chen, L. 2021. Research on operation safety of offshore wind farms, Journal of Marine Science and Engineering 9(8): 881. https://doi.org/10.3390/jmse9080881

Muller, G. 1999. Intermodal Freight Transportation. Eno Transportation Foundation, Washington, DC, US. 502 p.

Pineda-Jaramillo, J.; Viti, F. 2023. Identifying the rail operating features associated to intermodal freight rail operation delays, Transportation Research Part C: Emerging Technologies 147: 103993. https://doi.org/10.1016/j.trc.2022.103993

Reniers, G. L. L.; Dullaert, W. 2013. A method to assess multi-modal Hazmat transport security vulnerabilities: Hazmat transport SVA, Transport Policy 28: 103–113. https://doi.org/10.1016/j.tranpol.2012.05.002

Rausand, M.; Barros, A.; Hoyland, A. 2020. System Reliability Theory: Models, Statistical Methods, and Applications. John Wiley & Sons, Inc. 856 p. https://doi.org/10.1002/9781119373940

Ruijters, E.; Stoelinga, M. 2015. Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools, Computer Science Review 15–16: 29–62. https://doi.org/10.1016/j.cosrev.2015.03.001

Serper, E. Z.; Alumur, S. A. 2016. The design of capacitated intermodal hub networks with different vehicle types, Transportation Research Part B: Methodological 86: 51–65. https://doi.org/10.1016/j.trb.2016.01.011

UNCTAD. 2024. 2024 Review of Maritime Transport: Navigating Maritime Chokepoints. United Nations Conference on Trade and Development (UNCTAD). New York, NY, US. 166 p. Available from Internet: https://unctad.org/publication/review-maritime-transport-2024

Verma, M.; Verter L.; Zufferey, N. 2012. A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials, Transportation Research Part E: Logistics and Transportation Review 48(1): 132–149. https://doi.org/10.1016/j.tre.2011.06.001

Vrbanic, I.; Basic, I. 2024. Consideration of quantitative risk reduction and risk achievement measures in safe NPP design, Nukleonika 69(2): 119–124. https://doi.org/10.2478/nuka-2024-0017

Xu, Z.; Zheng, C.; Zheng, S.; Ma, G.; Chen, Z. 2024. Multimodal transportation route optimization of emergency supplies under uncertain conditions, Sustainability 16(24): 10905. https://doi.org/10.3390/su162410905

Zhang, Q.; Yu, H.; Li, Z.; Zhang, G.; Ma, D. T. 2020. Assessing potential likelihood and impacts of landslides on transportation network vulnerability, Transportation Research Part D: Transport and Environment 82: 102304. https://doi.org/10.1016/j.trd.2020.102304

View article in other formats

CrossMark check

CrossMark logo

Published

2025-12-31

Issue

Section

Original Article

How to Cite

Popa, C., Stefanov, O., & Mickienė, R. (2025). Modelling solutions for cost optimization in multimodal transports considering the operational risk variables. Transport, 40(3), 249–259. https://doi.org/10.3846/transport.2025.25716

Share