Tourists′ local buses ridership and pandemic resilience: a smart card data analysis in Southern Catalonia

    Aaron Gutiérrez Info
    Leonardo Monteiro-Fialho Info
    Sergio Trilles Info
    Benito Zaragozí Info
    Carlos Granell Info
    Daniel Miravet Info
DOI: https://doi.org/10.3846/transport.2025.24650

Abstract

The COVID-19 pandemic′s harmful effects have varied across economic sectors and been particularly adverse for the transport and tourism sectors. This article analyses the pandemic′s impact on tourists′ use of public transport since 2020, including its patterns of change and general decline, using data from more than 40000 smart card holders considered to be summertime users during the peak tourist season in Camp de Tarragona (Catalonia, Spain). 3 model-based clustering analyses of pre-pandemic data from 2019 were performed and used to classify data generated since the pandemic began in 2020. The 1st model included variables of each smart card′s volume of activity, the 2nd model analysed the concentration or spatial dispersion of validated uses of each card, and the 3rd model examined the temporal dimension of the use of smart cards depending on the defined objective. Among the major findings, the number of journeys plunged by 92% in summer 2020 – that is, by far more than throughout the year (64%), which suggests a higher loss of travellers linked with tourism activities (e.g., tourists, 2nd-residence owners, and workers in the tourism sector). Regarding the spatial dimension, patterns with minor reductions related to trips taken within cities (45%) or between major cities (78%). By contrast, travellers with sprawled patterns fell the use by 93%. Last, profiles obtained from variables of a temporary nature presented similar percentages of losses; the most significant losses were for use distributed throughout the day (91.81%) and throughout the night (90.12%). This article provides valuable insights into the pandemic′s varied effects on the use of public transport during peak season at a tourist destination, insights that could inform policies and actions to ensure a more robust response to future crises.

Keywords:

COVID-19, public transport, tourism, smart card data, traveller profile, resilience

How to Cite

Gutiérrez, A., Monteiro-Fialho, L., Trilles, S., Zaragozí, B., Granell, C., & Miravet, D. (2025). Tourists′ local buses ridership and pandemic resilience: a smart card data analysis in Southern Catalonia. Transport, 40(2), 173–196. https://doi.org/10.3846/transport.2025.24650

Share

Published in Issue
November 6, 2025
Abstract Views
84

References

Abdullah, M.; Ali, N.; Dias, C.; Campisi, T.; Javid, M. A. 2021. Exploring the traveler′s intentions to use public transport during the COVID-19 pandemic while complying with precautionary measures, Applied Sciences 11(8): 3630. https://doi.org/10.3390/app11083630

Abu-Rayash, A.; Dincer, I. 2020. Analysis of mobility trends during the COVID-19 coronavirus pandemic: exploring the impacts on global aviation and travel in selected cities, Energy Research & Social Science 68: 101693. https://doi.org/10.1016/j.erss.2020.101693

Albalate, D.; Bel, G. 2010. Tourism and urban public transport: holding demand pressure under supply constraints, Tourism Management 31(3): 425–433. https://doi.org/10.1016/j.tourman.2009.04.011

Almlöf, E.; Rubensson, I.; Cebecauer, M.; Jenelius, E. 2021. Who continued travelling by public transport during COVID-19? Socioeconomic factors explaining travel behaviour in Stockholm 2020 based on smart card data, European Transport Research Review 13: 31. https://doi.org/10.1186/s12544-021-00488-0

Anke, J.; Francke, A.; Schaefer, L.-M.; Petzoldt, T. 2021. Impact of SARS-CoV-2 on the mobility behaviour in Germany, European Transport Research Review 13: 10. https://doi.org/10.1186/s12544-021-00469-3

Bagchi, M.; White, P. R. 2005. The potential of public transport smart card data, Transport Policy 12(5): 464–474. https://doi.org/10.1016/j.tranpol.2005.06.008

Barbieri, D. M.; Lou, B.; Passavanti, M.; Hui, C.; Hoff, I.; Antunes Lessa, D.; Sikka, G.; Chang, K.; Gupta, A.; Fang, K.; Banerjee, A.; Maharaj, B.; Lam, L.; Ghasemi, N.; Naik, B.; Wang, F.; Foroutan Mirhosseini, A.; Naseri, S.; Liu, Z.; Qiao, Y.; Tucker, A.; Wijayaratna, K.; Peprah, P.; Adomako, S.; Yu, L.; Goswami, S.; Chen, H.; Shu, B.; Hessami, A.; Abbas, M.; Agarwal, N.; Rashidi, T. H. 2021. Impact of covid-19 pandemic on mobility in ten countries and associated perceived risk for all transport modes, PLoS ONE 16(2): e0245886. https://doi.org/10.1371/journal.pone.0245886

Beck, M. J.; Hensher, D. A.; Wei, E. 2020. Slowly coming out of COVID-19 restrictions in Australia: implications for working from home and commuting trips by car and public transport, Journal of Transport Geography 88: 102846. https://doi.org/10.1016/j.jtrangeo.2020.102846

Becken, S.; Jin, X.; Zhang, C.; Gao, J. 2017. Urban air pollution in China: destination image and risk perceptions, Journal of Sustainable Tourism 25(1): 130–147. https://doi.org/10.1080/09669582.2016.1177067

Böcker, L.; Olsson, L. E.; Uteng, T. P.; Friman, M. 2023. Pandemic impacts on public transport safety and stress perceptions in Nordic cities, Transportation Research Part D: Transport and Environment 114: 103562. https://doi.org/10.1016/j.trd.2022.103562

Bujosa, A.; Riera, A.; Pons, P. J. 2015. Sun-and-beach tourism and the importance of intra-destination movements in mature destinations, Tourism Geographies: an International Journal of Tourism Space, Place and Environment 17(5): 780–794. https://doi.org/10.1080/14616688.2015.1093538

Cahyanto, I.; Wiblishauser, M.; Pennington-Gray, L.; Schroeder, A. 2016. The dynamics of travel avoidance: The case of Ebola in the U.S., Tourism Management Perspectives 20: 195–203. https://doi.org/10.1016/j.tmp.2016.09.004

Campisi, T.; Basbas, S.; Tanbay, N. A.; Georgiadis, G. 2022a. Some considerations on the key factors determining the reduction of public transport demand in Sicily during COVID-19 pandemic, International Journal of Transport Development and Integration 6(1): 81–94. https://doi.org/10.2495/TDI-V6-N1-81-94

Campisi, T.; Basbas, S.; Trouva, M.; Papas, T.; Akgün-Tanbay, N.; Stamatiadis, N.; Tesoriere, G. 2022b. Anxiety, fear and stress feelings of road users during daily walking in COVID-19 pandemic: Sicilian cities, Transportation Research Procedia 62: 107–114. https://doi.org/10.1016/j.trpro.2022.02.014

Cats, O. 2024. Identifying human mobility patterns using smart card data, Transport Reviews 44(1): 213–243. https://doi.org/10.1080/01441647.2023.2251688

Cheng, L.; Ning, Z.; Lei, D.; Cai, X.; Chen, X. 2024. Assessing the influence of the COVID-19 pandemic on passengers′ reliance on public transport, Journal of Transport Geography 119: 103951. https://doi.org/10.1016/j.jtrangeo.2024.103951

Da Silva Lopes, H.; Remoaldo, P. C.; Ribeiro, V.; Martín-Vide, J. 2021. Effects of the COVID-19 pandemic on tourist risk perceptions – the case study of Porto, Sustainability 13(11): 6399. https://doi.org/10.3390/su13116399

Das, S.; Boruah, A.; Banerjee, A.; Raoniar, R.; Nama, S.; Maurya, A. K. 2021. Impact of COVID-19: a radical modal shift from public to private transport mode, Transport Policy 109: 1–11. https://doi.org/10.1016/j.tranpol.2021.05.005

De Vos, J. 2020. The effect of COVID-19 and subsequent social distancing on travel behavior, Transportation Research Interdisciplinary Perspectives 5: 100121. https://doi.org/10.1016/j.trip.2020.100121

Delclòs-Alió, X.; Gutiérrez, A.; Miravet, D.; Tomàs-Porres, J.; Vich, G.; Clavé, S. A. 2022. Impact of the COVID-19 pandemic on tourist public transportation use and on its determinants: evidence from a Catalan coastal destination, Tourism Management Perspectives 44: 101003. https://doi.org/10.1016/j.tmp.2022.101003

Devillaine, F.; Munizaga, M.; Trépanier, M. 2012. Detection of activities of public transport users by analyzing smart card data, Transportation Research Record: Journal of the Transportation Research Board 2276: 48–55. https://doi.org/10.3141/2276-06

Domènech, A.; Miravet, D.; Gutiérrez, A. 2020. Mining bus travel card data for analysing mobilities in tourist regions, Journal of Maps 16(1): 40–49. https://doi.org/10.1080/17445647.2019.1709578

Domènech, A.; Miravet, D.; Gutiérrez, A. 2023. Tourists′ transport modal choices in Barcelona, Research in Transportation Business & Management 48: 100902. https://doi.org/10.1016/j.rtbm.2022.100902

Duro, J. A.; Perez-Laborda, A.; Turrion-Prats, J.; Fernández-Fernández, M. 2021. COVID-19 and tourism vulnerability, Tourism Management Perspectives 38: 100819. https://doi.org/10.1016/j.tmp.2021.100819

Eisenmann, C.; Nobis, C.; Kolarova, V.; Lenz, B.; Winkler, C. 2021. Transport mode use during the COVID-19 lockdown period in Germany: the car became more important, public transport lost ground, Transport Policy 103: 60–67. https://doi.org/10.1016/j.tranpol.2021.01.012

Eusébio, C.; Vieira, A. L. 2013. Destination attributes′ evaluation, satisfaction and behavioural intentions: a structural modelling approach, International Journal of Tourism Research 15(1): 66–80. https://doi.org/10.1002/jtr.877

Fernández Pozo, R.; Wilby, M. R.; Vinagre Díaz, J. J.; Rodríguez González, A. B. 2022. Data-driven analysis of the impact of COVID-19 on Madrid′s public transport during each phase of the pandemic, Cities 127: 103723. https://doi.org/10.1016/j.cities.2022.103723

Foell, S.; Phithakkitnukoon, S.; Kortuem, G.; Veloso, M.; Bento, C. 2015. Predictability of public transport usage: a study of bus rides in Lisbon, Portugal, IEEE Transactions on Intelligent Transportation Systems 16(5): 2955–2960. https://doi.org/10.1109/TITS.2015.2425533

Ghaemi, M. S.; Agard, B.; Trépanier, M.; Partovi Nia, V. 2017. A visual segmentation method for temporal smart card data, Transportmetrica A: Transport Science 13(5): 381–404. https://doi.org/10.1080/23249935.2016.1273273

Gössling, S.; Scott, D.; Hall, C. M. 2021. Pandemics, tourism and global change: a rapid assessment of COVID-19, Journal of Sustainable Tourism 29(1): 1–20. https://doi.org/10.1080/09669582.2020.1758708

Gramsch, B.; Guevara, C. A.; Munizaga, M.; Schwartz, D.; Tirachini, A. 2022. The effect of dynamic lockdowns on public transport demand in times of COVID-19: evidence from smartcard data, Transport Policy 126: 136–150. https://doi.org/10.1016/j.tranpol.2022.06.012

Gronau, W.; Kagermeier, A. 2007. Key factors for successful leisure and tourism public transport provision, Journal of Transport Geography 15(2): 127–135. https://doi.org/10.1016/j.jtrangeo.2006.12.008

Gutiérrez, A.; Domènech, A.; Zaragozí, B.; Miravet, D. 2020. Profiling tourists′ use of public transport through smart travel card data, Journal of Transport Geography 88: 102820. https://doi.org/10.1016/j.jtrangeo.2020.102820

Gutiérrez, A.; Miravet, D. 2016a. Estacionalidad turística y dinámicas metropolitanas: un análisis a partir de la movilidad en transporte público en el Camp de Tarragona, Revista de geografía Norte Grande 65: 65–89. https://doi.org/10.4067/S0718-34022016000300004 (in Spanish).

Gutiérrez, A.; Miravet, D. 2016b. The determinants of tourist use of public transport at the destination, Sustainability 8(9): 908. https://doi.org/10.3390/su8090908

Gutiérrez, A.; Miravet, D.; Domènech, A. 2021. COVID-19 and urban public transport services: emerging challenges and research agenda, Cities & Health 5(Sup1): S177–S180. https://doi.org/10.1080/23748834.2020.1804291

Hanaei, S.; Rezaei, N. 2020. COVID-19: developing from an outbreak to a pandemic, Archives of Medical Research 51(6): 582–584. https://doi.org/10.1016/j.arcmed.2020.04.021

Harris, J. R. 2020. The Subways Seeded the Massive Coronavirus Epidemic in New York City. Working Paper 27021. National Bureau of Economic Research, Cambridge, MA, US. 23 p. https://doi.org/10.3386/w27021

Hennig, C.; Meila, M.; Murtagh, F.; Rocci, R. (Eds). 2015. Handbook of Cluster Analysis. 773 p. Chapman and Hall/CRC. https://doi.org/10.1201/b19706

Hu, M.; Lin, H.; Wang, J.; Xu, C.; Tatem, A. J.; Meng, B.; Zhang, X.; Liu, Y.; Wang, P.; Wu, G.; Xie, H.; Lai, S. 2021. Risk of coronavirus disease 2019 transmission in train passengers: an epidemiological and modeling study, Clinical Infectious Diseases 72(4): 604–610. https://doi.org/10.1093/cid/ciaa1057

INE. 2020. Censos de población y viviendas. 2020. Instituto Nacional de Estadística (INE), Madrid, España. https://www.ine.es (in Spanish).

Ivanova, M.; Ivanov, I. K.; Ivanov, S. 2021. Travel behaviour after the pandemic: the case of Bulgaria, Anatolia: an International Journal of Tourism and Hospitality Research 32(1): 1–11. https://doi.org/10.1080/13032917.2020.1818267

Jenelius, E.; Cebecauer, M. 2020. Impacts of COVID-19 on public transport ridership in Sweden: analysis of ticket validations, sales and passenger counts, Transportation Research Interdisciplinary Perspectives 8: 100242. https://doi.org/10.1016/j.trip.2020.100242

Jiao, J.; Azimian, A. 2021. Exploring the factors affecting travel behaviors during the second phase of the COVID-19 pandemic in the United States, Transportation Letters: the International Journal of Transportation Research 13(5–6): 331–343. https://doi.org/10.1080/19427867.2021.1904736

Kim, C.; Cheon, S. H.; Choi, K.; Joh, C.-H.; Lee, H.-J. 2017. Exposure to fear: Changes in travel behavior during MERS outbreak in Seoul, KSCE Journal of Civil Engineering 21(7): 2888–2895. https://doi.org/10.1007/s12205-017-0821-5

Kim, M. J.; Hall, C. M.; Chung, N.; Kim, M.; Sohn, K. 2023. What makes tourists use public transport? Value-belief-norm theory, environmental, social, and governance factors, and the sustainable development goals, Journal of Travel Research 63(6): 1426–1441. https://doi.org/10.1177/00472875231191708

Korinth, B. 2020. The impact of COVID-19 on foreign travel plans of Polish tourists in 2020, Studia Periegetica 32(4): 59–69. Available from Internet: https://journals.wsb.poznan.pl/index.php/sp/article/view/24/62

Ku, D.; Yeon, C.; Lee, S.; Lee, K.; Hwang, K.; Li, Y. C.; Wong, S. C. 2021. Safe traveling in public transport amid COVID-19, Science Advances 7(43): eabg3691. https://doi.org/10.1126/sciadv.abg3691

Kurauchi, F.; Schmöcker, J.-D. 2017. Public Transport Planning with Smart Card Data. 274 p. CRC Press. https://doi.org/10.1201/9781315370408

Kusakabe, T.; Asakura, Y. 2014. Behavioural data mining of transit smart card data: a data fusion approach, Transportation Research Part C: Emerging Technologies 46: 179–191. https://doi.org/10.1016/j.trc.2014.05.012

Lau, J. T. F.; Yang, X.; Tsui, H.; Kim J. H. 2003. Monitoring community responses to the SARS epidemic in Hong Kong: from day 10 to day 62, Journal of Epidemiology & Community Health 57(11): 864–870. https://doi.org/10.1136/jech.57.11.864

Leask, A.; Fyall, A.; Garrod, B. 2013. Managing revenue in Scottish visitor attractions, Current Issues in Tourism 16(3): 240–265. https://doi.org/10.1080/13683500.2012.667070

Lizana, M.; Choudhury, C.; Watling, D. 2024. Analysing the impacts of individual-level factors on public transport usage during the COVID-19 pandemic: a comprehensive literature review and meta-analysis, Transport Reviews 44(2): 434–460. https://doi.org/10.1080/01441647.2023.2295967

Long, A.; Carney, F.; Kandt, J. 2023. Who is returning to public transport for non-work trips after COVID-19? Evidence from older citizens′ smart cards in the UK′s second largest city region, Journal of Transport Geography 107: 103529. https://doi.org/10.1016/j.jtrangeo.2023.103529

Lu, Q.; Atadil, H. A. 2021. Do you dare to travel to China? An examination of China′s destination image amid the COVID-19, Tourism Management Perspectives 40: 100881. https://doi.org/10.1016/j.tmp.2021.100881

Lue, C.-C.; Crompton, J. L.; Fesenmaier, D. R. 1993. Conceptualization of multi-destination pleasure trips, Annals of Tourism Research 20(2): 289–301. https://doi.org/10.1016/0160-7383(93)90056-9

Miravet, D.; Domènech, A.; Gutiérrez, A. 2021a. What prompts tourists to become public transportation users at their destination? The case of a Mediterranean city, Travel Behaviour and Society 24: 10–21. https://doi.org/10.1016/j.tbs.2021.01.007

Miravet, D.; Gutiérrez, A.; Domènech, A. 2021b. Sources of data to tackle the challenges of public transport provision in seasonal tourist destination, Transport and Sustainability 13: 117–138. https://doi.org/10.1108/S2044-994120210000013011

Mogaji, E. 2020. Impact of COVID-19 on transportation in Lagos, Nigeria, Transportation Research Interdisciplinary Perspectives 6: 100154. https://doi.org/10.1016/j.trip.2020.100154

Morency, C.; Trépanier, M.; Agard, B. 2007. Measuring transit use variability with smart-card data, Transport Policy 14(3): 193–203. https://doi.org/10.1016/j.tranpol.2007.01.001

Moreno, T.; Pintó, R. M.; Bosch, A.; Moreno, N.; Alastuey, A.; Minguillón, M. C.; Anfruns-Estrada, E.; Guix, S.; Fuentes, C.; Buonanno, G.; Stabile, L.; Morawska, L.; Querol, X. 2021. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains, Environment International 147: 106326. https://doi.org/10.1016/j.envint.2020.106326

Munizaga, M. A.; Palma, C. 2012. Estimation of a disaggregate multimodal public transport origin–destination matrix from passive smartcard data from Santiago, Chile, Transportation Research Part C: Emerging Technologies 24: 9–18. https://doi.org/10.1016/j.trc.2012.01.007

Mützel, C. M.; Scheiner, J. 2022. Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei metro smart card data, Public Transport 14(2): 343–366. https://doi.org/10.1007/s12469-021-00280-2

Neuburger, L.; Egger, R. 2021. Travel risk perception and travel behaviour during the COVID-19 pandemic 2020: a case study of the DACH region, Current Issues in Tourism 24(7): 1003–1016. https://doi.org/10.1080/13683500.2020.1803807

Ong, F.; Loa, P.; Nurul Habib, K. 2024. A behavioural analysis of post-pandemic modality profiles for non-commuting trips in the greater Toronto area, Travel Behaviour and Society 34: 100690. https://doi.org/10.1016/j.tbs.2023.100690

Östh, J.; Toger, M.; Türk, U.; Kourtit, K.; Nijkamp, P. 2023. Leisure mobility changes during the COVID-19 pandemic – an analysis of survey and mobile phone data in Sweden, Research in Transportation Business & Management 48: 100952. https://doi.org/10.1016/j.rtbm.2023.100952

Paulino, I.; Prats, L.; Schofield, P. 2019. Tourist hub consumption systems: convenient flexibility versus administrative constraint, Journal of Hospitality and Tourism Management 41: 69–79. https://doi.org/10.1016/j.jhtm.2019.09.006

Pelletier, M.-P.; Trépanier, M.; Morency, C. 2011. Smart card data use in public transit: A literature review, Transportation Research Part C: Emerging Technologies 19(4): 557–568. https://doi.org/10.1016/j.trc.2010.12.003

Pradhan, D.; Biswasroy, P.; Kumar Naik, P.; Ghosh, G.; Rath, G. 2020. A review of current interventions for COVID-19 prevention, Archives of Medical Research 51(5): 363–374. https://doi.org/10.1016/j.arcmed.2020.04.020

Prideaux, B. 2000. The role of the transport system in destination development, Tourism Management 21(1): 53–63. https://doi.org/10.1016/S0261-5177(99)00079-5

R Foundation. 2025. The R Project for Statistical Computing. Available from Internet: https://www.r-project.org

Rahman, M. K.; Gazi, A. I.; Bhuiyan, M. A.; Rahaman, A. 2021. Effect of COVID-19 pandemic on tourist travel risk and management perceptions, PLoS ONE 16(9): e0256486. https://doi.org/10.1371/journal.pone.0256486

Ram, Y.; Hall, C. M. 2018. Walking tourism in cities: introducing the special issue, International Journal of Tourism Cities 4(3): 281–284. https://doi.org/10.1108/IJTC-09-2018-098

Raveau, S.; Muñoz, J. C.; De Grange, L. 2011. A topological route choice model for metro, Transportation Research Part A: Policy and Practice 45(2): 138–147. https://doi.org/10.1016/j.tra.2010.12.004

Rodríguez González, A. B.; Wilby, M. R.; Vinagre Díaz, J. J.; Fernández Pozo, R. 2021. Characterization of COVID-19′s impact on mobility and short-term prediction of public transport demand in a mid-size city in Spain, Sensors 21(19): 6574. https://doi.org/10.3390/s21196574

Rosenberg, J. M.; Beymer, P. N.; Anderson, D. J.; Van Lissa, C. J.; Schmidt, J. A. 2018. TidyLPA: an R package to easily carry out latent profile analysis (LPA) using open-source or commercial software, Journal of Open Source Software 3(30): 978. https://doi.org/10.21105/joss.00978

Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A. E. 2016. Mclust 5: clustering, classification and density estimation using gaussian finite mixture models, The R Journal 8(1): 289–317. https://doi.org/10.32614/RJ-2016-021

Severo, M.; Ribeiro, A. I.; Lucas, R.; Leão, T.; Barros, H. 2021. Urban rail transportation and SARS-CoV-2 infections: an ecological study in the Lisbon metropolitan area, Frontiers in Public Health 9: 611565. https://doi.org/10.3389/fpubh.2021.611565

Shaheen, S.; Wong, S. 2021. Future of Public Transit and Shared Mobility: Scenario Planning for COVID-19 Recovery. Research Report No UC-ITS- 2021-58. Institute of Transportation Studies, University of California, Berkeley, CA, US. 78 p. https://doi.org/10.7922/G2NC5ZGR

Shen, Y.; Li, C.; Dong, H.; Wang, Z.; Martinez, L.; Sun, Z.; Handel, A.; Chen, Z.; Chen, E.; Ebell, M. H.; Wang, F.; Yi, B.; Wang, H.; Wang, X.; Wang, A.; Chen, B.; Qi, Y.; Liang, L.; Li, Y.; Ling, F.; Chen, J.; Xu, G. 2020. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China, JAMA Internal Medicine 180(12): 1665–1671. https://doi.org/10.1001/jamainternmed.2020.5225

Shin, H.; Nicolau, J. L.; Kang, J.; Sharma, A.; Lee, H. 2022. Travel decision determinants during and after COVID-19: the role of tourist trust, travel constraints, and attitudinal factors, Tourism Management 88: 104428. https://doi.org/10.1016/j.tourman.2021.104428

Tan, L.; Ma, C. 2021. Choice behavior of commuters′ rail transit mode during the COVID-19 pandemic based on logistic model, Journal of Traffic and Transportation Engineering (English Edition) 8(2): 186–195. https://doi.org/10.1016/j.jtte.2020.07.002

Tang, C.; Ceder, A.; Zhao, S.; Ge, Y.-E. 2016. Determining optimal strategies for single-line bus operation by means of smartphone demand data, Transportation Research Record: Journal of the Transportation Research Board 2539: 130–139. https://doi.org/10.3141/2539-15

Thao, V. T.; Hüsser, A. P.; Ohnmacht, T. 2024. Collective or Individual? Tourists′ travel mode choice during a pandemic, Transportation Research Interdisciplinary Perspectives 26: 101150. https://doi.org/10.1016/j.trip.2024.101150

Tang, C.; Ceder, A.; Zhao, S.; Ge, Y.-E. 2019. Vehicle scheduling of single-line bus service using operational strategies, IEEE Transactions on Intelligent Transportation Systems 20(3): 1149–1159. https://doi.org/10.1109/TITS.2018.2841061

Tirachini, A.; Cats, O. 2020. COVID-19 and public transportation: current assessment, prospects, and research needs, Journal of Public Transportation 22(1): 1–21. https://doi.org/10.5038/2375-0901.22.1.1

Trépanier, M.; Tranchant, N.; Chapleau, R. 2007. Individual trip destination estimation in a transit smart card automated fare collection system, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 11(1): 1–14. https://doi.org/10.1080/15472450601122256

Vich, G.; Gutiérrez, A.; Delclòs-Alió, X.; Tomàs-Porres, J.; Miravet, D. 2022. Presence of tourists and perceived safety from COVID-19 among local bus users: evidence from a Mediterranean city, Transportation Research Interdisciplinary Perspectives 14: 100599. https://doi.org/10.1016/j.trip.2022.100599

Wang, K.-Y. 2014. How change of public transportation usage reveals fear of the SARS virus in a city, PLoS ONE 9(3): e89405. https://doi.org/10.1371/journal.pone.0089405

Wang, Yu.; Choudhury, C.; Hancock, T. O.; Wang, Ya.; Ortúzar, J. D. 2024. Influence of perceived risk on travel mode choice during COVID-19, Transport Policy 148: 181–191. https://doi.org/10.1016/j.tranpol.2024.01.009

Wasserman, J. L.; Rios, N.; King, H.; Siddiq, F.; Bressette, B.; Taylor, B. D. 2022. Transit(ory) Finance: the Past, Present, and Future Fiscal Effects of COVID-19 on Public Transit in Southern California. Research Report. Institute of Transportation Studies, University of California, Los Angeles, CA, US. 82 p. https://doi.org/10.17610/T60G65

Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L. D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T. L.; Miller, E.; Bache, S. M.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D. P.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. 2019. Welcome to the tidyverse, Journal of Open Source Software 4(43): 1686. https://doi.org/10.21105/joss.01686

Zamparini, L.; Domènech, A.; Miravet, D.; Gutiérrez, A. 2022. Green mobility at home, green mobility at tourism destinations: a cross-country study of transport modal choices of educated young adults, Journal of Transport Geography 103: 103412. https://doi.org/10.1016/j.jtrangeo.2022.103412

Zaragozí, B.; Gutiérrez, A.; Delclòs-Alió, X.; Miravet, D. 2023. Exploring the public bus ridership loss and recovery during the COVID-19 pandemic: a spatiotemporal analysis using smart card data, Journal of Maps 19(1): 2231022. https://doi.org/10.1080/17445647.2023.2231022

Zaragozí, B.; Trilles, S.; Gutiérrez, A.; Miravet, D. 2021. Development of a common framework for analysing public transport smart card data, Energies 14(19): 6083. https://doi.org/10.3390/en14196083

Zhang, K.; Hou, Y.; Li, G. 2020. Threat of infectious disease during an outbreak: Influence on tourists′ emotional responses to disadvantaged price inequality, Annals of Tourism Research 84: 102993. https://doi.org/10.1016/j.annals.2020.102993

Zhang, N.; Jia, W.; Wang, P.; Dung, C.-H.; Zhao, P.; Leung, K.; Su, B.; Cheng, R.; Li, Y. 2021. Changes in local travel behaviour before and during the COVID-19 pandemic in Hong Kong, Cities 112: 103139. https://doi.org/10.1016/j.cities.2021.103139

Zhang, Z.; Fu, D.; Liu, F.; Wang, J.; Xiao, K.; Wolshon, B. 2023. COVID-19, traffic demand, and activity restriction in China: a national assessment, Travel Behaviour and Society 31: 10–23. https://doi.org/10.1016/j.tbs.2022.11.001

Zientara, P.; Jażdżewska-Gutta, M.; Bąk, M.; Zamojska, A. 2024. Examining the use of public transportation by tourists in ten European capitals through the lens of hierarchical leisure constraints theory, Journal of Travel Research 64(4): 888–911. https://doi.org/10.1177/00472875241228499

View article in other formats

CrossMark check

CrossMark logo

Published

2025-11-06

Issue

Section

Original Article

How to Cite

Gutiérrez, A., Monteiro-Fialho, L., Trilles, S., Zaragozí, B., Granell, C., & Miravet, D. (2025). Tourists′ local buses ridership and pandemic resilience: a smart card data analysis in Southern Catalonia. Transport, 40(2), 173–196. https://doi.org/10.3846/transport.2025.24650

Share