Viability of automation, robotization and intelligent systems in the last-mile delivery: a roadmap for future research

    Adriana Saraceni Info
    Rozali Oleko Info
    Lisi Guan Info
    Lieven Quintens Info
DOI: https://doi.org/10.3846/transport.2025.22883

Abstract

Cutting-edge technologies in automation, robotization and intelligent systems are emerging in last-mile delivery. However, lacking knowledge on viability is limiting the application and transformation in the final stage of logistics chains. The aim of this article is to identify viable automation, robotization and intelligent solutions and discuss their association for last-mile delivery optimization. This article therefore presents a systematic review of automation, robotization and intelligent solutions, followed by empirical data collected from a workshop with practitioners and representatives of logistic companies, seeking to identify associated opportunities and challenges. The analysis resulted in 3 clusters of innovative solutions discerned upon functional characteristics. Furthermore, the acquired empirical data enabled co-relation from theory and practice to both ensuing opportunities and challenges. By analysing the input by practitioners in the field, we propose internal development and spillover effects as deriving opportunities, technical requirements, and societal concerns as emanating challenges. Based on the diversity of opportunities and challenges associated to each solution, this study proposes a roadmap for future research.

Keywords:

automation, robotization, intelligent systems, last-mile delivery, big data, Logistics 4.0

How to Cite

Saraceni, A., Oleko, R., Guan, L., & Quintens, L. (2025). Viability of automation, robotization and intelligent systems in the last-mile delivery: a roadmap for future research. Transport, 40(2), 141–157. https://doi.org/10.3846/transport.2025.22883

Share

Published in Issue
October 14, 2025
Abstract Views
27

References

Aurambout, J.-P.; Gkoumas, K.; Ciuffo, B. 2019. Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities, European Transport Research Review 11: 30. https://doi.org/10.1186/s12544-019-0368-2

Badue, C.; Guidolini, R.; Carneiro, R. V.; Azevedo, P.; Cardoso, V. B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T. M.; Mutz, F.; De Paula Veronese, L. P.; Oliveira-Santos, T.; De Souza, A. F. 2021. Self-driving cars: a survey, Expert Systems with Applications 165: 113816. https://doi.org/10.1016/j.eswa.2020.113816

Barratt, M.; Choi, T. Y.; Li, M. 2011. Qualitative case studies in operations management: trends, research outcomes, and future research implications, Journal of Operations Management 29(4): 329–342. https://doi.org/10.1016/j.jom.2010.06.002

Bjørgen, A.; Bjerkan, K. Y.; Hjelkrem, O. A. 2021. E-groceries: sustainable last mile distribution in city planning, Research in Transportation Economics 87: 100805. https://doi.org/10.1016/j.retrec.2019.100805

Bosona, T. 2020. Urban freight last mile logistics – challenges and opportunities to improve sustainability: a literature review, Sustainability 12(21): 8769. https://doi.org/10.3390/su12218769

Chen, Y.; Yu, J.; Yang, S.; Wei, J. 2018. Consumer′s intention to use self-service parcel delivery service in online retailing: An empirical study. Internet Research 28(2): 500–519. https://doi.org/10.1108/IntR-11-2016-0334

Chiang, W.-C.; Li, Y.; Shang, J.; Urban, T. L. 2019. Impact of drone delivery on sustainability and cost: realizing the UAV potential through vehicle routing optimization, Applied Energy 242: 1164–1175. https://doi.org/10.1016/j.apenergy.2019.03.117

Chui, M.; Manyika, J.; Bughin, J. 2011. Big Data′s Potential for Businesses. McKinsey & Company. Available from Internet: https://www.mckinsey.com/mgi/media-center/big-data-potential-for-businesses

Corentin, P.; Saraceni, A. V. 2022. Automated delivery robots: a vehicle routing problem on last mile delivery cost per unit based on range and carrying capacity, IFAC-PapersOnLine 55(10): 121–126, https://doi.org/10.1016/j.ifacol.2022.09.378

Comi, A. 2020. A modelling framework to forecast urban goods flows, Research in Transportation Economics 80: 100827. https://doi.org/10.1016/j.retrec.2020.100827

Comi, A.; Savchenko, L. 2021. Last-mile delivering: analysis of environment-friendly transport, Sustainable Cities and Society 74: 103213. https://doi.org/10.1016/j.scs.2021.103213

Davis, F. D. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly 13(3): 319–340. https://doi.org/10.2307/249008

Di Puglia Pugliese, L.; Macrina, G.; Guerriero, F. 2021. Trucks and drones cooperation in the last-mile delivery process, Networks 78(4): 371–399. https://doi.org/10.1002/net.22015

Dorling, K.; Heinrichs, J.; Messier, G. G.; Magierowski, S. 2016. Vehicle routing problems for drone delivery, IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(1): 70–85. https://doi.org/10.1109/TSMC.2016.2582745

Dubey, R.; Gunasekaran, A.; Childe, S. J.; Roubaud, D.; Fosso Wamba, S.; Giannakis, M.; Foropon, C. 2019. Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain, International Journal of Production Economics 210: 120–136. https://doi.org/10.1016/j.ijpe.2019.01.023

Elsayed, M.; Mohamed, M. 2020. The impact of airspace regulations on unmanned aerial vehicles in last-mile operation, Transportation Research Part D: Transport and Environment 87: 102480. https://doi.org/10.1016/j.trd.2020.102480

Emmens, T.; Amrit, C.; Abdi, A.; Ghosh, M. 2021. The promises and perils of automatic identification system data, Expert Systems with Applications 178: 114975. https://doi.org/10.1016/j.eswa.2021.114975

Ewedairo, K. S. 2019. The Future of Last-Mile Delivery: a Scenario Thinking Approach. PhD Dissertation. School of Business IT and Logistics, College of Business, RMIT University, Australia. 265 p. https://doi.org/10.25439/rmt.27598776

Fehling, C.; Saraceni, A. 2023. Technical and legal critical success factors: Feasibility of drones & AGV in the last-mile-delivery, Research in Transportation Business & Management 50: 101029. https://doi.org/10.1016/j.rtbm.2023.101029

Feng, Y.; Zhu, Q.; Lai, K.-H. 2017. Corporate social responsibility for supply chain management: a literature review and bibliometric analysis, Journal of Cleaner Production 158: 296–307. https://doi.org/10.1016/j.jclepro.2017.05.018

Florio, A. M.; Feillet, D.; Hartl, R. E. 2018. The delivery problem: Optimizing hit rates in e-commerce deliveries, Transportation Research Part B: Methodological 117: 455–472. https://doi.org/10.1016/j.trb.2018.09.011

Fosso Wamba, S. 2022. Humanitarian supply chain: a bibliometric analysis and future research directions, Annals of Operations Research 319(1): 937–963. https://doi.org/10.1007/s10479-020-03594-9

Geetha, S.; Poonthalir, G.; Vanathi, P. T. 2013. Nested particle swarm optimisation for multi-depot vehicle routing problem, International Journal of Operational Research 16(3): 329–348. https://doi.org/10.1504/IJOR.2013.052336

Ghaderi, H.; Tsai, P.-W.; Zhang, L.; Moayedikia, A. 2022. An integrated crowdshipping framework for green last mile delivery, Sustainable Cities and Society 78: 103552. https://doi.org/10.1016/j.scs.2021.103552

Hahn, G. J. 2020. Industry 4.0: a supply chain innovation perspective, International Journal of Production Research 58(5): 1425–1441. https://doi.org/10.1080/00207543.2019.1641642

Heimerl, F.; Lohmann, S.; Lange, S.; Ertl, T. 2014. Word cloud explorer: text analytics based on word clouds, in 2014 47th Hawaii International Conference on System Sciences, 6–9 January 2014, Waikoloa, HI, US, 1833–1842. https://doi.org/10.1109/HICSS.2014.231

Hoffmann, T.; Prause, G. 2018. On the regulatory framework for last-mile delivery robots, Machines 6(3): 33. https://doi.org/10.3390/machines6030033

Jackson, A.; Srinivas, S. 2021. A simulation-based evaluation of drone integrated delivery strategies for improving pharmaceutical service, International Series in Operations Research & Management Science 304: 185–204. https://doi.org/10.1007/978-3-030-69265-0_7

Kapser, S.; Abdelrahman, M. 2020. Acceptance of autonomous delivery vehicles for last-mile delivery in Germany – Extending UTAUT2 with risk perceptions, Transportation Research Part C: Emerging Technologies 111: 210–225. https://doi.org/10.1016/j.trc.2019.12.016

Kiba-Janiak, M.; Marcinkowski, J.; Jagoda, A.; Skowrońska, A. 2021. Sustainable last mile delivery on e-commerce market in cities from the perspective of various stakeholders. Literature review, Sustainable Cities and Society 71: 102984. https://doi.org/10.1016/j.scs.2021.102984

Lazarević, D.; Dobrodolac, M. 2020. Sustainability trends in the postal systems of last-mile delivery, Perner′s Contacts 15(1): 1–12. https://doi.org/10.46585/pc.2020.1.1547

Letnik, T.; Peruš, I.; Božičnik, S.; Mencinger, M. 2019. On fundamental principles of the optimal number and location of loading bays in urban areas, Transport 34(6): 722–740. https://doi.org/10.3846/transport.2019.11779

Leung, K. H.; Choy, K. L.; Siu, P. K. Y.; Ho, G. T. S.; Lam, H. Y.; Lee, C. K. M. 2018. A B2C e-commerce intelligent system for re-engineering the e-order fulfilment process, Expert Systems with Applications 91: 386–401. https://doi.org/10.1016/j.eswa.2017.09.026

Lim, S. F. W. T.; Jin, X.; Srai, J. S. 2018. Consumer-driven e-commerce: a literature review, design framework, and research agenda on last-mile logistics models, International Journal of Physical Distribution & Logistics Management 48(3): 308–332. https://doi.org/10.1108/IJPDLM-02-2017-0081

Lukinskiy, Va.; Lukinskiy, Vl.; Merkuryev, Y. 2018. Modelling of transport operations in supply chains in obedience to “just-in-time” conception, Transport 33(5): 1162–1172. https://doi.org/10.3846/transport.2018.7112

Macioszek, E. 2018. First and last mile delivery – problems and issues, Advances in Intelligent Systems and Computing 631: 147–154. https://doi.org/10.1007/978-3-319-62316-0_12

Maditati, D. R.; Munim, Z. H.; Schramm, H.-J.; Kummer, S. 2018. A review of green supply chain management: from bibliometric analysis to a conceptual framework and future research directions, Resources, Conservation and Recycling 139: 150–162. https://doi.org/10.1016/j.resconrec.2018.08.004

Maghazei, O.; Netland, T. 2020. Drones in manufacturing: exploring opportunities for research and practice, Journal of Manufacturing Technology Management 31(6): 1237–1259. https://doi.org/10.1108/jmtm-03-2019-0099

Mangiaracina, R.; Perego, A.; Seghezzi, A.; Tumino, A. 2019. Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: a literature review, International Journal of Physical Distribution & Logistics Management 49(9): 901–920. https://doi.org/10.1108/ijpdlm-02-2019-0048

Moshref-Javadi, M.; Winkenbach, M. 2021. Applications and Research avenues for drone-based models in logistics: A classification and review, Expert Systems with Applications 177: 114854. https://doi.org/10.1016/j.eswa.2021.114854

Mucowska, M. 2021. Trends of environmentally sustainable solutions of urban last-mile deliveries on the e-commerce market – a literature review, Sustainability 13(11): 5894. https://doi.org/10.3390/su13115894

Paddeu, D.; Parkhurst, G.; Fancello, G.; Fadda, P.; Ricci, M. 2018. Multi-stakeholder collaboration in urban freight consolidation schemes: drivers and barriers to implementation, Transport 33(4): 913–929. https://doi.org/10.3846/transport.2018.6593

Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. 2018. A review of last mile logistics innovations in an externalities cost reduction vision, Sustainability 10(3): 782. https://doi.org/10.3390/su10030782

Rossolov, A.; Rossolova, H.; Holguín-Veras, J. 2021. Online and in-store purchase behavior: shopping channel choice in a developing economy, Transportation 48(6): 3143–3179. https://doi.org/10.1007/s11116-020-10163-3

Saetta, S.; Caldarelli, V. 2020. How to increase the sustainability of the agri-food supply chain through innovations in 4.0 perspective: a first case study analysis, Procedia Manufacturing 42: 333–336. https://doi.org/10.1016/j.promfg.2020.02.083

Saraceni, A.; Oleko, R.; Guan, L.; Bagaria, A.; Quintens, L. 2022. Autonomization and digitalization: index of last mile 4.0 inclusive transition, IFIP Advances in Information and Communication Technology 663: 173–182. https://doi.org/10.1007/978-3-031-16407-1_21

Sarma, D.; Das, A.; Kumar Bera, U. K. 2020. Uncertain demand estimation with optimization of time and cost using Facebook disaster map in emergency relief operation, Applied Soft Computing 87: 105992. https://doi.org/10.1016/j.asoc.2019.105992

Seghezzi, A.; Mangiaracina, R.; Tumino, A.; Perego, A. 2021. “Pony express” crowdsourcing logistics for last-mile delivery in B2C e-commerce: an economic analysis, International Journal of Logistics Research and Applications: a Leading Journal of Supply Chain Management 24(5): 1–17. https://doi.org/10.1080/13675567.2020.1766428

Shan, S.; Zhao, F.; Wei, Y.; Liu, M. 2019. Disaster management 2.0: a real-time disaster damage assessment model based on mobile social media data – a case study of Weibo (Chinese Twitter), Safety Science 115: 393–413. https://doi.org/10.1016/j.ssci.2019.02.029

Shani, A. B. R.; Tenkasi, R. R. V.; Alexander, B. N. 2017. Knowledge and practice: a historical perspective on collaborative management research, in J. Bartunek, J. McKenzie (Eds.). Academic–Practitioner Relationships: Developments, Complexities and Opportunities, 17–34. https://doi.org/10.4324/9781315657530-3

Shi, K.; De Vos, J.; Yang, Y.; Witlox, F. 2019. Does e-shopping replace shopping trips? Empirical evidence from Chengdu, China, Transportation Research Part A: Policy and Practice 122: 21–33. https://doi.org/10.1016/j.tra.2019.01.027

Silvestri, P.; Zoppi, M.; Molfino, R. 2019. Dynamic investigation on a new robotized vehicle for urban freight transport, Simulation Modelling Practice and Theory 96: 101938. https://doi.org/10.1016/j.simpat.2019.101938

Simoni, M. D.; Marcucci, E.; Gatta, V.; Claudel, C. G. 2020. Potential last-mile impacts of crowdshipping services: a simulation-based evaluation, Transportation 47(4): 1933–1954. https://doi.org/10.1007/s11116-019-10028-4

US Chamber of Commerce. 2025. Supply Chain Security Working Group. Available from Internet: https://www.uschamber.com/security/supply-chain

Tsai, Y.-T.; Tiwasing, P. 2021. Customers′ intention to adopt smart lockers in last-mile delivery service: A multi-theory perspective, Journal of Retailing and Consumer Services 61: 102514. https://doi.org/10.1016/j.jretconser.2021.102514

Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. 2019. Service innovation in e-commerce last mile delivery: mapping the e-customer journey, Journal of Business Research 101: 461–468. https://doi.org/10.1016/j.jbusres.2019.01.016

Vanelslander, T.; Deketele, L.; Van Hove, D. 2013. Commonly used e-commerce supply chains for fast moving consumer goods: comparison and suggestions for improvement, International Journal of Logistics Research and Applications: a Leading Journal of Supply Chain Management 16(3): 243–256. https://doi.org/10.1080/13675567.2013.813444

Viu-Roig, M.; Alvarez-Palau, E. J. 2020. The impact of e-commerce-related last-mile logistics on cities: a systematic literature review, Sustainability 12(16): 6492. https://doi.org/10.3390/su12166492

Willcocks, L. 2020. Robo-Apocalypse cancelled? Reframing the automation and future of work debate, Journal of Information Technology 35(4): 286–302. https://doi.org/10.1177/0268396220925830

Winkelhaus, S.; Grosse, E. H. 2020. Logistics 4.0: a systematic review towards a new logistics system, International Journal of Production Research 58(1): 18–43. https://doi.org/10.1080/00207543.2019.1612964

Xu, S.; Zhang, X.; Feng, L.; Yang, W. 2020. Disruption risks in supply chain management: a literature review based on bibliometric analysis, International Journal of Production Research 58(11): 3508–3526. https://doi.org/10.1080/00207543.2020.1717011

Zhang, Y.; Sun, L.; Hu, X.; Zhao, C. 2019. Order consolidation for the last-mile split delivery in online retailing, Transportation Research Part E: Logistics and Transportation Review 122: 309–327. https://doi.org/10.1016/j.tre.2018.12.011

Zhou, M.; Zhao, L.; Kong, N.; Campy, K. S.; Xu, G.; Zhu, G.; Cao, X.; Wang, S. 2020. Understanding consumers′ behavior to adopt self-service parcel services for last-mile delivery, Journal of Retailing and Consumer Services 52: 101911. https://doi.org/10.1016/j.jretconser.2019.101911

Zhu, Y. 2019. The status & future trend of the last mile distribution mode in Chinese cities, in Proceedings of the 2019 2nd International Conference on Education, Economics and Social Science (ICEESS 2019), 30–31 October 2019, Singapore, 261–264. https://doi.org/10.2991/iceess-19.2019.67

View article in other formats

CrossMark check

CrossMark logo

Published

2025-10-14

Issue

Section

Original Article

How to Cite

Saraceni, A., Oleko, R., Guan, L., & Quintens, L. (2025). Viability of automation, robotization and intelligent systems in the last-mile delivery: a roadmap for future research. Transport, 40(2), 141–157. https://doi.org/10.3846/transport.2025.22883

Share