Share:


Applying regular relief onto conical surfaces of continuously variable transmission to enhance its wear resistance

    Volodymyr Dzyura Affiliation
    ; Pavlo Maruschak Affiliation
    ; Stoyan Slavov Affiliation
    ; Diyan Dimitrov Affiliation

Abstract

While investigating the variator transmission of vehicles, the relationship between the technological and service parameters of the working surfaces of conical disks treated by technological methods was established. The service properties are proposed to be enhanced by Regular MicroReliefs (RMRs) created on such surfaces. The optimal technological processing conditions were found, which allow retaining the greatest amount of lubricant. The causes of surface defects, formed on the working surfaces of conical disks of the Continuously Variable Transmission (CVT), are systematized and classified. The wear resistance of such surfaces is proposed to be enhanced by technological methods, in particular, by forming partially RMRs on them. Their application facilitates relaxation processes on the material near to the surface, reduces shear stresses and strains, thus preventing the formation of burrs and extending the life of the conical disks of the CVT. A novel approach for obtaining the toolpaths of the deforming element, based on the so-called “Commis–Voyageur problem” algorithms, is employed in order to research the possibilities for involving that methods in toolpath generation. Dependences between the partial RMR’s formation conditions (deforming forces and feedrate) and microgeometric quality parameters are established. The latter include surface roughness, with a partially RMR applied onto the face surfaces of the test specimen (rotary body). It is found that these microreliefs enhance the ability of oil retaining in plastically deformed traces, formed over the operational surfaces, in comparison with those, that are processed by traditional cutting methods, as turning for example.

Keyword : continuously variable transmission, regular microrelief, wear resistance, guaranteed oil layer, Abbott–Firestone curve, surface roughness, Commis–Voyageur based algorithms, toolpaths generation

How to Cite
Dzyura, V., Maruschak, P., Slavov, S., & Dimitrov, D. (2023). Applying regular relief onto conical surfaces of continuously variable transmission to enhance its wear resistance. Transport, 38(3), 178–189. https://doi.org/10.3846/transport.2023.20628
Published in Issue
Dec 29, 2023
Abstract Views
125
PDF Downloads
149
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Applegate, D.; Cook, W.; Dash, S.; Rohe, A. 2002. Solution of a min-max vehicle routing problem, INFORMS Journal on Computing 14(2): 132–143. https://doi.org/10.1287/ijoc.14.2.132.118

Bonsen, B.; De Metsenaere, C; Klaassen, T. W. G. L.; Van de Meerakker KGO; Steinbuch, M.; Veenhuizen, P. A. 2004. Simulation and control of slip in a continuously variable transmission, in 7th International Symposium on Advanced Vehicle Control: AVEC’04, 23–27 August 2004, Arnhem, Netherlands, 111–115.

Bonsen, B.; Klaassen, T. W. G. L.; Pulles, R. J.; Simons, S. W. H.; Steinbuch, M.; Veenhuizen, P. A. 2005. Performance optimisation of the push-belt CVT by variator slip control, International Journal of Vehicle Design 39(3): 232–256. https://doi.org/10.1504/IJVD.2005.008473

Bulatov, V. P.; Krasny, V. A.; Schneider, Y. G. 1997. Basics of machining methods to yield wear- and fretting-resistive surfaces, having regular roughness patterns, Wear 208(1–2): 132–137. https://doi.org/10.1016/S0043-1648(96)07403-0

Costa, H. L.; Hutchings, I. M. 2015. Some innovative surface texturing techniques for tribological purposes, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 229(4): 429–448. https://doi.org/10.1177/1350650114539936

Dzyura, V.; Maruschak, P. 2021. Tehnologichni metody zabezpechennja parametriv jakosti poverhon’ til obertannja ta i’h profilometrychnyj kontrol’. Ternopil’, Ukrai’na. 170 s. (in Ukrainian).

Dzyura, V.; Maruschak, P.; Prentkovskis, O. 2021a. Determining optimal parameters of regular microrelief formed on the end surfaces of rotary bodies, Algorithms 14(2): 46. https://doi.org/10.3390/a14020046

Dzyura, V.; Maruschak, P.; Slavov, S.; Dimitrov, D.; Vasileva, D. 2021b. Experimental research of partial regular microreliefs formed on rotary body face surfaces, Aviation 25(4): 268–277. https://doi.org/10.3846/aviation.2021.15889

Dzyura, V.; Maruschak, P.; Slavov, S.; Gurey, V.; Prentkovskis, O. 2021c. Evaluating service characteristics of working surfaces of car parts by microgeometric quality parameters, Machines 9(12): 366. https://doi.org/10.3390/machines9120366

GOST R ISO 4287-2014. Geometricheskie harakteristiki izdelij (GPS). Struktura poverhnosti. Profil’nyj metod. Terminy, opredelenija i parametry struktury poverhnosti. (in Russian).

Guzanová, A.; Brezinová, J.; Bronček, J.; Maruschak, P.; Landová, M. 2015. Study of selected properties of coatings devoted to extreme tribo-corrosive conditions, Materials Science Forum 818: 32–36. https://doi.org/10.4028/www.scientific.net/MSF.818.32

Helsgaun, K. 2000. An effective implementation of the Lin–Kernighan traveling salesman heuristic, European Journal of Operational Research 126(1): 106–130. https://doi.org/10.1016/S0377-2217(99)00284-2

Kiselev, M. G.; Korzun, P. O.; Pavich, T. P. 2009. Opredelenie vida mikrorel’efa obrabotannoj poverhnosti, obespechivajushhego ee naibol’shuju ploshhad’ i ob’em pri kontaktirovanii s zhidkost’ju, Vestnik GGTU im. P. O. Suhogo 4: 40–52. (in Russian).

Nagîț, G.; Slătineanu, L.; Dodun, O.; Rîpanu, M. I.; Mihalache, A. M. 2019. Surface layer microhardness and roughness after applying a vibroburnishing process, Journal of Materials Research and Technology 8(5): 4333–4346. https://doi.org/10.1016/j.jmrt.2019.07.044

Nagorkin, M. N.; Fyodorov, V. P.; Kovalyova, E. V. 2018. Modeling of process of forming quality parameters for surfaces of parts by diamond burnishing taking into account technological heredity, IOP Conference Series: Materials Science and Engineering 327(4): 042071. https://doi.org/10.1088/1757-899X/327/4/042071

Nagorkin, M. N.; Fyodorov, V. P.; Nagorkina, V. V. 2017. Simulation modelling of tribotechnologies system and its parametric reliability assessment on tribotechnical parameters of the joints of sliding friction, IOP Conference Series: Materials Science and Engineering 177: 012079. https://doi.org/10.1088/1757-899X/177/1/012079

Nanbu, T.; Ren, N.; Yasuda, Y.; Zhu, D.; Wang, Q. J. 2008. Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion, Tribology Letters 29(3): 241–252. https://doi.org/10.1007/s11249-008-9302-9

Pawlus, P.; Reizer, R.; Wieczorowski, M. 2019. Reverse problem in surface texture analysis—one-process profile modeling on the basis of measured two-process profile after machining or wear, Materials 12(24): 4169. https://doi.org/10.3390/ma12244169

Sánchez Egea, A. J.; Rodríguez, A.; Celentano, D.; Calleja, A.; López de Lacalle, L. N. 2019. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy, Surface and Coatings Technology 367: 327–335. https://doi.org/10.1016/j.surfcoat.2019.04.010

Seigars, C. M. 2016. Modeling of a Continuously Variable Transmission and Clutching of a Snowmobile. Honors Thesis. University of Maine, Orono, ME, US. 91 p. Available from Internet: https://digitalcommons.library.umaine.edu/honors/243/

Shnejder, Y. G.; Lebedinskij, G. G. 1970. Issledovanie vlijanija maslojomkosti rabochih poverhnostej gil’z cilindrov avtomobil’nyh dvigatelej na ih prirabatyvaemost’, in Uprochnjajushhe-kalibrujushhie i formoobrazujushhie metody obrabotki detalej: tezisy nauchno-prakticheskoj konferencii, 13–15 nojabrja 1970 g., Rostov-na-Donu, SSSR, 92–93. (in Russian).

Slavov, S. D.; Dimitrov, D. M. 2018. A study for determining the most significant parameters of the ball-burnishing process over some roughness parameters of planar surfaces carried out on CNC milling machine, MATEC Web of Conferences 178: 02005. https://doi.org/10.1051/matecconf/201817802005

Slavov, S.; Iliev, I. 2016. Design and FEM static analysis of an instrument for surface plastic deformation of non-planar functional surfaces of machine parts, Fiabilitate şi Durabilitate 2: 3–9.

Swirad, S.; Pawlus, P. 2021. The effect of ball burnishing on dry fretting, Materials 14(22): 7073. https://doi.org/10.3390/ma14227073

Van der Meulen, S. 2010. High-Performance Control of Continuously Variable Transmissions. PhD Thesis. Eindhoven University of Technology, Netherlands. 261 p. https://doi.org/10.6100/IR692236

Volchok, A.; Halperin, G.; Etsion, I. 2002. The effect of surface regular microtopography on fretting fatigue life, Wear 253(3–4): 509–515. https://doi.org/10.1016/S0043-1648(02)00148-5

Wang, Z. W.; Chen, M. W.; Wu, J. W.; Zheng, H. H.; Zheng, X. F. 2010. A review of surface texture of tribological interfaces, Applied Mechanics and Materials 37–38: 41–45. https://doi.org/10.4028/www.scientific.net/AMM.37-38.41

Wos, S.; Koszela, W.; Pawlus, P. 2020. Comparing tribological effects of various chevron-based surface textures under lubricated unidirectional sliding, Tribology International 146: 106205. https://doi.org/10.1016/j.triboint.2020.106205

Yagyaev, E.; Shron, L.; Meniuk, D. 2020. Increasing the operational reliability of car variators due to creating regular surface microrelief by laser ablation, IOP Conference Series: Materials Science and Engineering: 012007. https://doi.org/10.1088/1757-899X/889/1/012007

Zajdes, S. A.; Hin, N. W. 2017. Vlijanie parametrov oscillirujushhego vyglazhivanija na sherohovatost’ uprochnennyh poverhnostej, Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta 21(4): 22–29. https://doi.org/10.21285/1814-3520-2017-4-22-29 (in Russian).