Share:


Evaluation of fillet welds properties performed by cold metal transfer robotic metal active gas welding technology

    Janette Brezinová Affiliation
    ; Ján Hašuľ Affiliation

Abstract

The article is the result of research evaluating the quality of fillet welds used in the production of rear seat backrests for passenger cars and manufactured robotically by Cold Metal Transfer (CMT) robotic Metal Active Gas (MAG) welding. When robotizing the process, parameters such as the speed of the process itself, accuracy and quality of the welded joints are important. Dual-phase ferritic-martensitic steel HCX 590X was used for the experiment and four weld nodes were evaluated. The quality of welded joints was evaluated by visual and capillary methods. Based on the metallographic analysis, the weld depth of the weld root was evaluated. The measured values were subsequently processed by statistical method ANalysis Of Variance (ANOVA). The research confirmed that the final quality of the welds depends on the depth of the weld root weld into the Base Material (BM). This parameter has the greatest effect on the welds made and results in the entire product being taken out of service.

Keyword : metal active gas (MAG) welding, robotic, automotive industry, root penetration, microhardness

How to Cite
Brezinová, J., & Hašuľ, J. (2023). Evaluation of fillet welds properties performed by cold metal transfer robotic metal active gas welding technology. Transport, 38(1), 44–51. https://doi.org/10.3846/transport.2023.19084
Published in Issue
Jun 20, 2023
Abstract Views
357
PDF Downloads
442
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Babčanský P. 2019. Stanovenie kvality kútových zvarových spojov v automobilovom priemysle. Diplomová práca. Technická univerzita v Košiciach, Slovensko, 64 s. Available from Internet: https://opac.crzp.sk/?fn=detailBiblioFormChildGDKSO&sid=1207FF88EADD70B1D4C7AC0BD7FD (in Slovak).

Benedetti, M.; Fontanari, V.; Santus, C. 2013. Crack growth resistance of MAG butt-welded joints of S355JR construction steel, Engineering Fracture Mechanics 108: 305–315. https://doi.org/10.1016/j.engfracmech.2013.01.019

Božić, Ž.; Schmauder, S.; Wolf, H. 2018. The effect of residual stresses on fatigue crack propagation in welded stiffened panels, Engineering Failure Analysis 84: 346–357. https://doi.org/10.1016/j.engfailanal.2017.09.001

Das, A.; Masters, I.; Williams, D. 2021. Understanding novel gap-bridged remote laser welded (RLW) joints for automotive high-rate and temperature applications, International Journal of Mechanical Sciences 190: 106043. https://doi.org/10.1016/j.ijmecsci.2020.106043

Fernandes, F. A. O.; Oliveira, D. F.; Pereira, A. B. 2017. Optimal parameters for laser welding of advanced high-strength steels used in the automotive industry, Procedia Manufacturing 13: 219–226. https://doi.org/10.1016/j.promfg.2017.09.052

Graudenz, M.; Baur, M. 2013. Applications of laser welding in the automotive industry, in S. Katayama (Ed.). Handbook of Laser Welding Technologies, 555–574. https://doi.org/10.1533/9780857098771.4.555

He, Z.; Zhou, D.; Du, X.; Tao, T.; Wang, X.; Li, H.; Liu, J. 2022. Hybrid joining mechanism of rivet plug oscillating laser welding for dual-phase steel and magnesium alloy, Journal of Manufacturing Processes 77: 652–664. https://doi.org/10.1016/j.jmapro.2022.03.053

ISO 5817:2023. Welding. Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded). Quality Levels for Imperfections.

ISO 6892-1:2019. Metallic Materials. Tensile Testing. Part 1: Method of Test at Room Temperature.

ISO 9015-2:2016. Destructive Tests on Welds in Metallic Materials. Hardness Testing. Part 2: Microhardness Testing of Welded Joints.

ISO 17637:2016. Non-Destructive Testing of Welds. Visual Testing of Fusion-Welded Joints.

ISO 23277:2015. Non-Destructive Testing of Welds. Penetrant Testing. Acceptance Levels.

Jia, Y.; Wen, T.; Huang, N.; Zhang, J.; Xiao, J.; Chen, S.; Huang, W. 2022. Research on aluminum alloy welding process based on high frequency and low power pulsed laser-MIG hybrid welding, Optics & Laser Technology 150: 107899. https://doi.org/10.1016/j.optlastec.2022.107899

Lee, S. H.; Kim, E. S.; Park, J. Y.; Choi, J. 2018. Numerical analysis of thermal deformation and residual stress in automotive muffler by MIG welding, Journal of Computational Design and Engineering 5(4): 382–390. https://doi.org/10.1016/j.jcde.2018.05.001

Mlikota, M.; Schmauder, S.; Božić, Ž.; Hummel, M. 2017. Modelling of overload effects on fatigue crack initiation in case of carbon steel, Fatigue & Fracture of Engineering Materials & Structures 40(8): 1182–1190. https://doi.org/10.1111/ffe.12598

Moinuddin, S. Q.; Hameed, S. S.; Dewangan, A. K.; Kumar, K. R.; Kumari, A. S. 2021. A study on weld defects classification in gas metal arc welding process using machine learning techniques, Materials Today: Proceeding 43: 623–628. https://doi.org/10.1016/j.matpr.2020.12.159

Sedmak, A.; Hemer, A.; Sedmak, S. A.; Milović, L.; Grbović, A.; Čabrilo, A.; Kljajin, M. 2021. Welded joint geometry effect on fatigue crack growth resistance in different metallic materials, International Journal of Fatigue 150: 106298. https://doi.org/10.1016/j.ijfatigue.2021.106298

Sedmak, S. A. 2019. Procena integriteta i veka zavarenih spojeva mikrolegiranih čelika povišene čvrstoće pri dejstvu statičkog i dinamičkog opterećenja. Doktorska disertacija. Mašinski fakultet, Univerzitet u Beogradu, Republika Srbija. 219 s. Available from Internet: https://nardus.mpn.gov.rs/handle/123456789/17618 (in Serbian).

Sumesh, A.; Nair, B. B.; Rameshkumar, K.; Santhakumari, A.; Raja, A.; Mohandas K. 2018. Decision tree based weld defect classification using current and voltage signatures in GMAW process, Materials Today: Proceedings 5(2): 8354–8363. https://doi.org/10.1016/j.matpr.2017.11.528

Xu, Y.; Wang, Z. 2021. Visual sensing technologies in robotic welding: recent research developments and future interests, Sensors and Actuators A: Physical 320: 112551. https://doi.org/10.1016/j.sna.2021.112551

Zhang, H.; Chen, C. 2021. Effect of pulse frequency on weld appearance of Al alloy in pulse power ultrasonic assisted GMAW, Journal of Manufacturing Processes 71: 565–570. https://doi.org/10.1016/j.jmapro.2021.09.047