The modelling of emissions evaluation at asphalt mixing plant in hot recycling

    Mindaugas Martišius Affiliation
    ; Henrikas Sivilevičius Affiliation


Transport industry with its infrastructure sector is one the main sources of GreenHouse Gas (GHG) emissions. In parallel, this industry has the main part on gross domestic product of a high transport transit countries with a develop road network. Transport infrastructure (TI) must be continuously developed, improved, and carefully maintained accordingly traffic and goods flow with respect to safety and emissions. Renewable resources, such as Reclaimed Asphalt Pavement (RAP) and energy from sustainable sources are the main accents reducing carbon emissions in the industry. The comparison outlook of different technologies emissions in a Hot-Mix Asphalt (HMA) with RAP production at Asphalt Mixing Plant (AMP) are presented in this paper. CO2 emissions comparison of different RAP additions models and fuel types was analysed. The calculation model was presented for carbon emissions in most critical GHG generated AM production stage as new aggregates and RAP drying and heating.

Keyword : asphalt mixing plant, emissions, reclaimed asphalt pavement, burner, fuels, drying drum

How to Cite
Martišius, M., & Sivilevičius, H. (2022). The modelling of emissions evaluation at asphalt mixing plant in hot recycling. Transport, 37(2), 137–144.
Published in Issue
Jun 13, 2022
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Butt, A. A.; Mirzadeh, I.; Toller, S.; Birgisson, B. 2014. Life cycle assessment framework for asphalt pavements: methods to calculate and allocate energy of binder and additives, International Journal of Pavement Engineering 15(4): 290–302.

Chollar, B. H.; Zenewitz, J. A.; Boone, J. G.; Tran, K. T.; Anderson, D. T. 1989. Changes occurring in asphalts in drum dryer and batch (pub mill) mixing operations, Transportation Research Record 1228: 145–155.

Cui, Y.; Glover, C. J.; Bražiūnas, J.; Sivilevičius, H. 2018. Further exploration of the pavement oxidation model – diffusion-reaction balance in asphalt, Construction and Building Materials 161: 132–140.

De Picado Santos, L. G.; Da Costa Baptista, A. M.; Dias Capitão, S. 2010. Assessment of the use of hot-mix recycled asphalt concrete in plant, Journal of Transportation Engineering 136(12): 1159–1164.

Del Carmen Rubio, M.; Moreno, F.; Martinez-Echevarria, M. J.; Martínez, G.; Vázquez, J. M. 2013. Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt, Journal of Cleaner Production 41: 1–6.

EPA. 2020. Greenhouse Gas Inventory Guidance – Direct Emissions from Stationary Combustion Sources. US Environment Protection Agency (EPA). 24 p. Available from Internet:

Grabowski, W.; Jankowski., L.; Wilanowicz, J. 2013. Problems of energy reduction during the hot-mix asphalt production, The Journal of Road and Bridge Engineering 8(1): 40–47.

Hossain, M. I.; Veginati, V.; Krukow, J. 2015. Thermodynamics between RAP/RAS and virgin aggregates during asphalt concrete production – a literature review, Illinois Center for Transportation Series 15–015: 1–79. Available from Internet:

IEA. 2021. Global Energy Review 2021: Assessing the Effects of Economic Recoveries on Global Energy Demand and CO2 Emissions in 2021. International Energy Agency (IEA). 36 p. Available from Internet:

Itoya, E.; Hazzel, K.; Ison, S.; El-Hamalawi, A.; Frost, M. W. 2012. Framework for carbon emission evaluation of road maintenance, Transportation Research Record: Journal of the Transportation Research Board 2292: 1–11.

Kim, B.; Lee, H.; Park, H.; Kim, H. 2012. Framework for estimating greenhouse gas emissions due to asphalt pavement construction, Journal of Construction Engineering and Management 138(11): 1312–1321.

LAKD. 2008. Automobilių kelių asfalto mišinių techninių reikalavimų aprašas. TRA ASFALTAS 08. Lietuvos automobilių kelių direkcija (LAKD). 53 p. Available from Internet: (in Lithuanian).

Le Guen, L.; Huchet, F.; Tamagny, P. 2011. Drying and heating modelling of granular flow: application to the mix-asphalt processes, Journal of Applied Fluid Mechanics 4(2): 71–80.

LR AM. 2021. Lietuvos šiltnamio dujų emisijos vis dar auga, ypač transporto sektoriuje. Lietuvos Respublikos aplinkos ministerija (LR AM). Available from Internet: (in Lithuanian).

Martišius, M. 2020. Reclaimed asphalt usage: handling, processing, management and future trends in Lithuania, Lecture Notes in Civil Engineering 48: 294–302.

Martišius, M.; Sivilevičius, H. 2020. Analysis of design and technological processes of hot recycling asphalt mixture at batch asphalt mixing plants, in 11th International Conference “Environmental Engineering”, 21–22 May 2020, Vilnius, Lithuania, 1–7.

Mogawer, W.; Bennert, T.; Daniel, J. S.; Bonaquist, R.; Austerman, A.; Booshehrian, A. 2012. Performance characteristics of plant produced high RAP mixtures, Road Materials and Pavement Design 13(1): 183–208.

Peinado, D.; De Vega, M.; García-Hernando, N.; Marugán-Cruz, C. 2011. Energy and exergy analysis in an asphalt plant’s rotary dryer, Applied Thermal Engineering 31(6–7): 1039–1049.

Piton, M.; Hutchet, F.; Le Guen, L.; Le Corre, O.; Cazacliu, B. 2013. Heat recovery exchanger applied to the rotary drum for asphalt materials processing, Récents Progrès en Génie des Procédés 104: 1–9.

Schmidt, B.; Dyre, J. C. 2012. CO2 emission reduction by exploitation of rolling resistance modelling of pavements, Procedia – Social and Behavioral Sciences 48: 311–320.

Sivilevičius, H.; Bražiūnas, J.; Prentkovskis, O. 2017. Technologies and principles of hot recycling and investigation of preheated reclaimed asphalt pavement batching process in an asphalt mixing plant, Applied Sciences 7(11): 1104.

Sivilevičius, H.; Martišius, M. 2021. Field investigation and assessment on the wear of asphalt pavement milling machine picks, Transport 36(6): 499–509.

Sivilevičius, H.; Vislavičius, K. 2019. Simulation of composition of recycled hot-mix asphalt mixture produced in asphalt mixing plant, Construction and Building Materials 214: 17–27.

Umweltbundesamt. 2019. Nationales Luftreinhalteprogramm der Bundesrepublik Deutschland 2019. Umweltbundesamt, Deutschland. 120 S. Available from Internet: (in German).

UNFCCC. 2021. Greenhouse Gas Data: Global Warming Potentials. IPCC Second Assessment Report. United Nations Framework Convention on Climate Change (UNFCCC). Available from Internet:

Vislavičius, K.; Sivilevičius, H. 2013. Effect of reclaimed asphalt pavement gradation variation on the homogeneity of recycled hot-mix asphalt, Archives of Civil and Mechanical Engineering 13(3): 345–353.

VšĮ ŽE. 2021. Žiedinė ekonomika. VšĮ „Žiedinė ekonomika“ (VšĮ ŽE). Available from Internet: (in Lithuanian).

Williams, B. A.; Willis, J. R.; Shacat, J. 2020. Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2019. National Asphalt Pavement Association (NAPA), Greenbelt, MD, US. 151 p.

Zaumanis, M.; Mallick, R. B.; Frank, R. 2014. 100% recycled hot mix asphalt: a review and analysis, Resources, Conservation and Recycling 92: 230–245.