Share:


A systematic review on pneumatic gripping devices for industrial robots

    Roman Mykhailyshyn Affiliation
    ; Volodymyr Savkiv Affiliation
    ; Pavlo Maruschak Affiliation
    ; Jing Xiao Affiliation

Abstract

Based on the literature review, the article presents the analysis of approaches to classifying Gripping Devices (GDs) of Industrial Robots (IRs) and substantiates the need for systematising Pneumatic GDs (PGDs). The authors propose a classification of well-known PGDs, in which the holding force of the Manipulated Object (MO) is formed under the action of gas-dynamic effects. A general classification of PGDs with features common to all PGD subtypes is proposed: PGD type; contact type; object base type; object centring type; specialisation type; working range; availability of additional devices; the number of grippers; type of control; type of attachment to the robot. Each feature of the general PGD classification, which affects PGD characteristics, is analysed, and a usage example is given. The advantages of each feature included in the general PGD classification are also considered. For a more detailed classification, PGDs are divided into the following types: Vacuum GDs (VGDs), Jet GDs (JGDs), Combined PGDs (CPGDs). For VGD, the main distinguishing features are highlighted, which are the vacuum creation method, effect/actuator, stepwise nozzle, suction cup type, suction material type. The main distinguishing features of JGDs include using a jet of compressed air, the shape of nozzle elements, the number of nozzle elements, the direction of gas flows, type of surface of the MO. The main distinguishing features of CPGD include the type of combination and function performed. The main features are given for each classification, and the advantages/disadvantages of the most typical representatives of GDs are described. The authors identify the main development directions for GDs at the present stage of robotisation of production processes, medicine, military and space technology, etc. Based on the analysis and systematisation of literature data, the authors define the main promising areas of research that will be actively developed soon: optimisation of grippers’ design, flexible grippers, additive manufacturing (3D-printing) when creating grippers, collaborative grippers, modular grippers, universal grippers, grippers based on new materials, new effects in grippers, bionic and medical grippers, simulation and rendering of the gripping process.

Keyword : gripping device, object of manipulation, industrial robot, pneumatic gripping device, vacuum gripping device, jet gripping device, combined gripping device

How to Cite
Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201–231. https://doi.org/10.3846/transport.2022.17110
Published in Issue
Aug 23, 2022
Abstract Views
1227
PDF Downloads
684
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al-Hujazi, E.; Sood, A. 1990. Range image segmentation with applications to robot bin-picking using vacuum gripper, IEEE Transactions on Systems, Man, and Cybernetics 20(6): 1313–1325. https://doi.org/10.1109/21.61203

Amend, J. R.; Brown, E.; Rodenberg, N.; Jaeger, H. M.; Lipson, H. 2012. A positive pressure universal gripper based on the jamming of granular material, IEEE Transactions on Robotics 28(2): 341–350. https://doi.org/10.1109/TRO.2011.2171093

Andersen, J.; Christensen, T. 2004. Apparatus for Handling Layers of Palletized Goods. United States Patent 6,802,688.

Armengol, J.; Calbó, J.; Pujol, T.; Roura, P. 2008. Bernoulli correction to viscous losses: Radial flow between two parallel discs, American Journal of Physics 76(8): 730–737. https://doi.org/10.1119/1.2897290

Becker, A.; Sandheinrich, R.; Bretl, T. 2009. Automated manipulation of spherical objects in three dimensions using a gimbaled air jet, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 10–15 October 2009, St. Louis, MO, US, 781–786. https://doi.org/10.1109/IROS.2009.5354427

Bicchi, A.; Kumar, V. 2000. Robotic grasping and contact: a review, in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, 24–28 April 2000, San Francisco, CA, US, 1: 348–353. https://doi.org/10.1109/ROBOT.2000.844081

Birglen, L.; Schlicht, T. 2018. A statistical review of industrial robotic grippers, Robotics and Computer-Integrated Manufacturing 49: 88–97. https://doi.org/10.1016/j.rcim.2017.05.007

Blanes, C.; Mellado, M.; Ortiz, C.; Valera, A. 2011. Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables, Spanish Journal of Agricultural Research 9(4): 1130–1141. https://doi.org/10.5424/sjar/20110904-501-10

Blazhnov, A. A. 2014. Vihrevoe vakuumnoe beskontaktnoe zahvatnoe ustrojstvo [Vortex vacuum contactless gripper], Materialovedenie. Jenergetika (4): 203–209. Available from Internet: https://engtech.spbstu.ru/article/2014.90.22/ (in Russian).

Bogue, R. 2012. Artificial muscles and soft gripping: a review of technologies and applications, Industrial Robot 39(6): 535–540. https://doi.org/10.1108/01439911211268642

Boubekri, N.; Chakraborty, P. 2002. Robotic grasping: gripper designs, control methods and grasp configurations – a review of research, Integrated Manufacturing Systems 13(7): 520–531. https://doi.org/10.1108/09576060210442978

Brandt, E. H. 1989. Levitation in physics, Science 243(4889): 349–355. https://doi.org/10.1126/science.243.4889.349

Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M. R.; Jaeger, H. M. 2010. Universal robotic gripper based on the jamming of granular material, Proceedings of the National Academy of Sciences 107(44): 18809–18814. https://doi.org/10.1073/pnas.1003250107

Brun, X.; Melkote, S. N. 2012. Effect of substrate flexibility on the pressure distribution and lifting force generated by a Bernoulli gripper, Journal of Manufacturing Science and Engineering 134(5): 051010. https://doi.org/10.1115/1.4007186

Brun, X. F.; Melkote, S. N. 2006. Evaluation of handling stresses applied to EFG silicon wafer using a Bernoulli gripper, in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 7–12 May 2006, Waikoloa, HI, US, 1346–1349. https://doi.org/10.1109/WCPEC.2006.279680

Brun, X. F.; Melkote, S. N. 2009. Modeling and prediction of the flow, pressure, and holding force generated by a Bernoulli handling device, Journal of Manufacturing Science and Engineering 131(3): 031018. https://doi.org/10.1115/1.3139222

Carbone, G. (Ed.). 2013. Grasping in robotics, Mechanisms and Machine Science 10: 1–468. https://doi.org/10.1007/978-1-4471-4664-3

Chandran, C. S. A.; Sajikumar, K. S.; Jayaraj, K. 2019. Numerical characterisation of the performance of flow rate on a non-contact vortex gripper, Journal of Physics: Conference Series 1355: 012001. https://doi.org/10.1088/1742-6596/1355/1/012001

Chen, F. Y. 1982. Gripping mechanisms for industrial robots: an overview, Mechanism and Machine Theory 17(5): 299–311. https://doi.org/10.1016/0094-114X(82)90011-8

Cîrciu, I.; Dinea, S. 2010. Review of applications on Coandă effect. History, theories, new trends, Review of the Air Force Academy 17(2): 14–20.

Cîrciu, I.; Rotaru, C. 2019. Theoretical and practical aspects of the Coandă effect applied in aeronautics, MATEC Web of Conferences 290: 06003. https://doi.org/10.1051/matecconf/201929006003

Cui, T.; Song, A.; Xiao, J. 2009. Modeling global deformation using circular beams for haptic interaction, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 10–15 October 2009, St. Louis, MO, US, 1743–1748. https://doi.org/10.1109/IROS.2009.5354710

Davis, S.; Gray, J. O.; Caldwell, D. G. 2008. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables, Robotics and Computer-Integrated Manufacturing 24(2): 249–257. https://doi.org/10.1016/j.rcim.2006.11.002

Derby, S. J.; Lippiatt, J. 2005. Robotic material handling of flexible fuel cell membranes, in ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 24–28 September 2005, Long Beach, CA, US, 555–563. https://doi.org/10.1115/DETC2005-84174

Dini, G.; Fantoni, G.; Failli, F. 2009. Grasping leather plies by Bernoulli grippers, CIRP Annals 58(1): 21–24. https://doi.org/10.1016/j.cirp.2009.03.076

Dumitrache, A.; Frunzulica, F.; Dumitrescu, H.; Preotu, O. 2011. Numerical analysis of turbulent flow in a Coanda ejector, Proceedings in Applied Mathematics and Mechanics 11(1): 647–648. https://doi.org/10.1002/pamm.201110313

Edwards, D. K.; Kramer, J. H. 1986. Washer Pick Up and Placement Tool. United States Patent 4,604,024.

Ertürk, Ş.; Erzincanlı, F. 2020. Design and development of a non-contact robotic gripper for tissue manipulation in minimally invasive surgery, Acta Biomedica 91(3): e2020071. https://doi.org/10.23750/abm.v91i3.8129

Ertürk, Ş.; Samtaş, G. 2019. Design of grippers for laparoscopic surgery and optimization of experimental parameters for maximum tissue weight holding capacity, Bulletin of the Polish Academy of Sciences Technical Sciences 67(6): 1125–1132. https://doi.org/10.24425/bpasts.2019.130894

Erzincanli, F.; Sharp, J. M. 1997. Development of a non-contact end effector for robotic handling of non-rigid materials, Robotica 15(3): 331–335. https://doi.org/10.1017/S0263574797000374

Fantoni, G.; Capiferri, S.; Tilli, J. 2014a. Method for supporting the selection of robot grippers, Procedia CIRP 21: 330–335. https://doi.org/10.1016/j.procir.2014.03.152

Fantoni, G.; Santochi, M.; Dini, G.; Tracht, K.; Scholz-Reiter, B.; Fleischer, J.; Lien, T. K.; Seliger, G.; Reinhart, G.; Franke, J.; Nørgaard Hansen, H.; Verl, A. 2014b. Grasping devices and methods in automated production processes, CIRP Annals 63(2): 679–701. https://doi.org/10.1016/j.cirp.2014.05.006

Festo Inc. 2021a. Bernoulli Grippers OGGB. 5 p. Available from Internet: https://www.festo.com/ee/en/p/bernoulli-grippers-id_OGGB/

Festo Inc. 2021b. Tentacle Gripper: Gripping Modelled on an Octopus Tentacle. 8 p. Available from Internet: https://www.festo.com/net/en_group/SupportPortal/Files/630182/Festo_TentacleGripper_en.pdf

Fleischer, J.; Förster, F.; Gebhardt, J. 2016. Sustainable manufacturing through energy efficient handling processes, Procedia CIRP 40: 574–579. https://doi.org/10.1016/j.procir.2016.01.136

Fleischer, J.; Ochs, A.; Förster, F. 2013. Gripping Technology for Carbon Fibre Material, in CIRP International Conference on Competitive Manufacturing, 30 January 2013, Stellenbosch, Republic of South Africa, 65–71.

Forerunner 3D Printing Inc. 2021. 3D Printed End of Arm Tooling. Forerunner 3D Printing Inc., Coopersville, MI, US. Available from Internet: https://forerunner3d.com/3d-printed-end-of-arm-tooling/

Fox Venturi Products Inc. 2021. Fox Air and Gas Jet Venturi Ejectors. Fox Venturi Products Inc., Dover, NJ, US. Available from Internet: https://www.foxvalve.com/air-gas-steam-vacuum-ejectors/introduction-to-air-steam-and-gas-ejectors

Freudendahl, D.; Heuer, C.; Langner, R. 2019. Künstliche Muskeln, Werkstoffe in der Fertigung 1: 3–3. (in German).

Fujita, M.; Ikeda, S.; Fujimoto, T.; Shimizu, T.; Ikemoto, S.; Miyamoto, T. 2018. Development of universal vacuum gripper for wall-climbing robot, Advanced Robotics 32(6): 283–296. https://doi.org/10.1080/01691864.2018.1447238

Gabriel, F.; Fahning, M.; Meiners, J.; Dietrich, F.; Dröder, K. 2020. Modeling of vacuum grippers for the design of energy efficient vacuum-based handling processes, Production Engineering 14(5–6): 545–554. https://doi.org/10.1007/s11740-020-00990-9

Giesen, T.; Bürk, E.; Fischmann, C.; Gauchel, W.; Zindl, M.; Verl, A. 2013. Advanced gripper development and tests for automated photovoltaic wafer handling, Assembly Automation 33(4): 334–344. https://doi.org/10.1108/AA-09-2012-075

Götz, R. 1991. Strukturierte Planung flexibel automatisierter Montagesysteme für flächige Bauteile. Springer. 200 S. (in German). https://doi.org/10.1007/978-3-662-10128-5

Gümpel, P. 2004. Formgedächtnislegierungen: Einsatzmöglichkeiten in Maschinenbau, Medizintechnik und Aktuatorik. Expert Verlag. 146 S. (in German).

Haines, C. S.; Lima, M. D.; Li, N.; Spinks, G. M.; Foroughi, J.; Madden, J. D. W.; Kim, S. H.; Fang, S.; De Andrade, M. J.; Göktepe, F.; Göktepe, Ö.; Mirvakili, S. M.; Naficy, S.; Lepró, X.; Oh, J.; Kozlov, M. E.; Kim, S. J.; Xu, X.; Swedlove, B. J.; Wallace, G. G.; Baughman, R. H. 2014. Artificial muscles from fishing line and sewing thread, Science 343(6173): 868–872. https://doi.org/10.1126/science.1246906

Hernando, M.; Gómez, V.; Brunete, A.; Gambao, E. 2021. CFD modelling and optimization procedure of an adhesive system for a modular climbing robot, Sensors 21(4): 1117. https://doi.org/10.3390/s21041117

Hesse, S. 2011. Greifertechnik: Effektoren für Roboter und Automaten. Carl Hanser Verlag GmbH & Co. KG. 288 S. Available from Internet: https://www.hanser-elibrary.com/isbn/9783446424227 (in German).

Hill, G. F.; Sachse, G. W.; Burney, L. G.; Wade, L. O. 1990. Venturi air-jet vacuum ejector for sampling air, NASA Tech Briefs 14(10): 86–87.

Hill, G. F.; Sachse, G. W.; Young, D. C.; Wade, L. O.; Burney, L. G. 1992. Venturi Air-Jet Vacuum Ejectors for High-Volume Atmospheric Sampling on Aircraft Platforms. NASA Technical Paper 3181. National Aeronautics and Space Administration (NASA), US. 39 p. Available from Internet: https://ntrs.nasa.gov/citations/19920011304

Hodson, R. 2018. How robots are grasping the art of gripping, Nature 557: S23–S25. https://doi.org/10.1038/d41586-018-05093-1

Huber, J. F. 2006. Air Jet Impingement For Levitation. MSC Thesis. University of Texas at Arlington, US. 113 p. Available from Internet: https://rc.library.uta.edu/uta-ir/handle/10106/140

IFR. 2021. International Federation of Robotics (IRF). Available from Internet: https://ifr.org

IFR. 2020. World Robotics Reports. International Federation of Robotics (IFR). Available from Internet: https://ifr.org/worldrobotics

Jakymchuk, M. V.; Gavva, O. M.; Kryvopljas-Volodina, L. O. 2017. Vakuumni zahopljuval’ni prystroi’ v pakuval’nyh mashynah (dejaki osoblyvosti zastosuvannja), Upakovka (1): 39–42. (in Ukrainian).

Journee, M.; Chen, X.; Robertson, J.; Jermy, M.; Sellier, M. 2011. An investigation into improved non-contact adhesion mechanism suitable for wall climbing robotic applications, in 2011 IEEE International Conference on Robotics and Automation, 9–13 May 2011, Shanghai, China, 4915–4920. https://doi.org/10.1109/ICRA.2011.5979842

Jørgensen, T. B.; Krüger, N.; Pedersen, M. M.; Hansen, N. W.; Hansen, B. R. 2019. Designing a flexible grasp tool and associated grasping strategies for handling multiple meat products in an industrial setting, International Journal of Mechanical Engineering and Robotics Research 8(2): 220–227. https://doi.org/10.18178/ijmerr.8.2.220-227

Kamensky, K. M.; Hellum, A. M.; Mukherjee, R. 2019. Power scaling of radial outflow: Bernoulli pads in equilibrium, Journal of Fluids Engineering 141(10): 101201. https://doi.org/10.1115/1.4043061

Kim, J. H.; Lee, S.-J. 2015. Configuration of noncontact grip system for carrying large flat sheets using vacuum air heads, Journal of Tribology 137(4): 041103. https://doi.org/10.1115/1.4030710

Konishcheva, O. V.; Briukhovetskaia, E. V.; Brungardt, M. V.; Shhepin, A. N.; Kudrjavcev, I. V. 2020. Study of a swirling gas jet emanated from a vortex jet gripper onto a plain barrier, Journal of Physics: Conference Series, 1515(4): 042037. https://doi.org/10.1088/1742-6596/1515/4/042037

Koustoumpardis, P. N.; Aspragathos, N. A. 2004. A review of gripping devices for fabric handling, International Conference on Intelligent Manipulation and Grasping IMG04, 1–2 July 2004, Genoa, Italy, 229–234.

Kramp, A. 2012. Device for Gripping a Compact Disc. United States Patent 8,128,336.

Kusano, M. 2010. Nut Feeder. United States Patent 7,753,230.

Lang, H. J.; Draht, T. 2009. Device for Operating a Fastening Tool. United States Patent 7,475,473.

Li, X.; Iio, S.; Kawashima, K.; Kagawa, T. 2011. Computational fluid dynamics study of a noncontact handling device using air-swirling flow, Journal of Engineering Mechanics 137(6): 400–409. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000237

Li, X.; Kagawa, T. 2013. Development of a new noncontact gripper using swirl vanes, Robotics and Computer-Integrated Manufacturing 29(1): 63–70. https://doi.org/10.1016/j.rcim.2012.07.002

Li, X.; Kagawa, T. 2014. Theoretical and experimental study of factors affecting the suction force of a Bernoulli gripper, Journal of Engineering Mechanics 140(9): 04014066. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000774

Li, X.; Kawashima, K.; Kagawa, T. 2008. Dynamic modeling of vortex levitation, in 2008 Asia Simulation Conference – 7th International Conference on System Simulation and Scientific Computing, 10–12 October 2008, Beijing, China, 218–224. https://doi.org/10.1109/ASC-ICSC.2008.4675358

Li, X.; Li, N.; Tao, G.; Liu, H.; Kagawa, T. 2015. Experimental comparison of Bernoulli gripper and vortex gripper, International Journal of Precision Engineering and Manufacturing 16(10): 2081–2090. https://doi.org/10.1007/s12541-015-0270-3

Lien, T. K. 2013. Gripper technologies for food industry robots, in D. G. Caldwell (Ed.). Robotics and Automation in the Food Industry: Current and Future Technologies, 143–170. https://doi.org/10.1533/9780857095763.1.143

Lien, T. K.; Davis, P. G. G. 2008. A novel gripper for limp materials based on lateral Coanda ejectors, CIRP Annals 57(1): 33–36. https://doi.org/10.1016/j.cirp.2008.03.119

Lippiello, V.; Ruggiero, F.; Siciliano, B.; Villani, L. 2013. Visual grasp planning for unknown objects using a multifingered robotic hand, IEEE/ASME Transactions on Mechatronics 18(3): 1050–1059. https://doi.org/10.1109/TMECH.2012.2195500

Liu, D.; Liang, W.; Zhu, H.; Teo, C. S.; Tan, K. K. 2017. Development of a distributed Bernoulli gripper for ultra-thin wafer handling, in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 3–7 July 2017, Munich, Germany, 265–270. https://doi.org/10.1109/AIM.2017.8014028

Liu, D.; Teo, C. S.; Liang, W.; Tan, K. K. 2019. Soft-acting, noncontact gripping method for ultrathin wafers using distributed Bernoulli principle, IEEE Transactions on Automation Science and Engineering 16(2): 668–677. https://doi.org/10.1109/TASE.2018.2848635

Liu, D.; Wang, M.; Fang, N.; Cong, M.; Du, Y. 2020. Design and tests of a non-contact Bernoulli gripper for rough-surfaced and fragile objects gripping, Assembly Automation 40(5): 735–743. https://doi.org/10.1108/AA-10-2019-0171

Liu, F. 2014. Review on ejector efficiencies in various ejector systems, in 15th International Refrigeration and Air Conditioning Conference at Purdue 2014, 14–17 July 2014, West Lafayette, IN, US, 2: 1123–1133. Available from Internet: http://docs.lib.purdue.edu/iracc/1533

Liu, H.; Li, X.; Ma, Q.; Feng, W. 2021. Development non-contact gripper with flowrate-amplification using Coanda ejector, Vacuum 187: 110108. https://doi.org/10.1016/j.vacuum.2021.110108

Liu, W.; Xu, J.; Liu, X. 2016. Numerical study on collision characteristics for non-spherical particles in Venturi powder ejector, Vacuum 131: 285–292. https://doi.org/10.1016/j.vacuum.2016.07.006

Long, Z.; Jiang, Q.; Shuai, T.; Wen, F.; Liang, C. 2020. A systematic review and meta-analysis of robotic gripper, IOP Conference Series: Materials Science and Engineering 782: 042055. https://doi.org/10.1088/1757-899X/782/4/042055

López-Arias, T.; Gratton, L. M.; Zendri, G.; Oss, S. 2011. Forces acting on a ball in an air jet, Physics Education 46(2): 146–151. https://doi.org/10.1088/0031-9120/46/2/001

Luo, Q.; Xiao, J. 2007. Contact and deformation modeling for interactive environments, IEEE Transactions on Robotics 23(3): 416–430. https://doi.org/10.1109/TRO.2007.895058

Luo, Q.; Xiao, J. 2005. Modeling complex contacts involving deformable objects for haptic and graphic rendering, in Robotics: Science and Systems I, 8–11 June 2005, Cambridge, MA, US, 153–160. https://doi.org/10.15607/RSS.2005.I.021

Makarov, A. M.; Mushkin, O. V.; Lapikov, M. A. 2018. Use of additive technologies to increase effectiveness of design and use of a vacuum gripping devices for flexible containers, MATEC Web of Conferences 224: 01082. https://doi.org/10.1051/matecconf/201822401082

Mantriota, G. 1999. Communication on optimal grip points for contact stability, The International Journal of Robotics Research 18(5): 502–513. https://doi.org/10.1177/027836499901800506

Mantriota, G. 2007a. Optimal grasp of vacuum grippers with multiple suction cups, Mechanism and Machine Theory 42(1): 18–33. https://doi.org/10.1016/j.mechmachtheory.2006.02.007

Mantriota, G. 2007b. Theoretical model of the grasp with vacuum gripper, Mechanism and Machine Theory 42(1): 2–17. https://doi.org/10.1016/j.mechmachtheory.2006.03.003

Marsova, E. V.; Benevolenskiy, S. B.; Abdulkhanova, M. U.; Ershov, V. S.; Savelyev, A. G. 2020. The problem of manipulation and angular orientation of gripping devices of construction robots, IOP Conference Series: Materials Science and Engineering 832: 012009. https://doi.org/10.1088/1757-899X/832/1/012009

Maruschak, P.; Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Chovanec, L. 2019. The analysis of influence of a nozzle form of the Bernoulli gripping devices on its energy efficiency, in ICCPT 2019: Current Problems of Transport: Proceedings of the 1st International Scientific Conference, 28–29 May 2019, Ternopil, Ukraine, 66–74. https://doi.org/10.5281/zenodo.3387275

Materialise Inc. 2021. Optimizing a Suction Gripper Design for Metal 3D Printing. Materialise Inc. Available from Internet: https://www.materialise.com/en/cases/dfam-optimizing-suction-gripper-for-metal-3d-printing

Mechatronic Systemtechnik GmbH. 2021. End Effectors. Mechatronic Systemtechnik GmbH, Villach, Austria. Available from Internet: https://www.mechatronic.at/en/products/our-technologies/end-effectors

Michalos, G.; Dimoulas, K.; Mparis, K.; Karagiannis, P.; Makris, S. 2018. A novel pneumatic gripper for in-hand manipulation and feeding of lightweight complex parts – a consumer goods case study, The International Journal of Advanced Manufacturing Technology 97(9–12): 3735–3750. https://doi.org/10.1007/s00170-018-2224-2

Monkman, G. J.; Hesse, S.; Steinmann, R.; Schunk, H. 2007. Robot Grippers. 453 p. John Wiley & Sons, Inc. https://doi.org/10.1002/9783527610280

Morimoto, K.; Tada, Y.; Takashima, H.; Minamino, K.; Tahara, R.; Konishi, S. 2010. Design and characterization of high-performance contactless gripper using spiral air flows, in 2010 International Symposium on Micro-Nano-Mechatronics and Human Science, 7–10 November 2010, Nagoya, Japan, 423–428. https://doi.org/10.1109/MHS.2010.5669510

Morimoto, K.; Tada, Y.; Takashima, H.; Minamino, K.; Tahara, R.; Konishi, S. 2011. 5-inch-size contactless gripper using arrayed spiral air flows, in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, 23–27 January 2011, Cancun, Mexico, 1063–1066. https://doi.org/10.1109/MEMSYS.2011.5734612

Mykhailyshyn, R.; Savkiv, V.; Mikhalishin, M.; Duchon, F. 2017. Experimental research of the manipulatiom process by the objects using Bernoulli gripping devices, in 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), 17–20 October 2017, Lviv, Ukraine, 8–11. https://doi.org/10.1109/YSF.2017.8126583

Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I. M. 2018a. Analysis of frontal resistance force influence during manipulation of dimensional objects, in 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 10–18 September 2018, Kharkiv, Ukraine, 301–305. https://doi.org/10.1109/IEPS.2018.8559527

Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I. M. 2018b. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system, 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 10–14 September 2018, Kharkiv, Ukraine, 295–300. https://doi.org/10.1109/IEPS.2018.8559586

Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Trembach, R.; Diahovchenko, I. M. 2019. Research of energy efficiency of manipulation of dimensional objects with the use of pneumatic gripping devices, in 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2–6 July 2019, Lviv, Ukraine, 527–532. https://doi.org/10.1109/UKRCON.2019.8879957

Mykhailyshyn, R.; Savkiv, V.; Boyko, I.; Prada, E.; Virgala, I. 2021. Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle, International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 11(2): 17–39. https://doi.org/10.4018/IJMMME.2021040102

Mykhailyshyn, R.; Xiao, J. 2022. Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots, Applied Sciences 12(14): 7074. https://doi.org/10.3390/app12147074

Natarajan, E.; Hong, L. W.; Ramasamy, M.; Hou, C. C.; Sengottuvelu, R. 2018. Design and development of a robot gripper for food industries using Coanda effect, in 2018 IEEE 4th International Symposium in Robotics and Manufacturing Automation (ROMA), 10–12 December 2018, Perambalur, India, 1–5. https://doi.org/10.1109/ROMA46407.2018.8986699

Natarajan, E.; Onubogu, N. O. 2012. Application of Coanda effect in robots – a review, Advances in Intelligent and Soft Computing 125: 411–418. https://doi.org/10.1007/978-3-642-27329-2_56

Olaru, I. 2020. A fluid flow analysis of a jet ejector system used in industrial applications, Journal of Engineering Studies and Research 26(3): 143–147. https://doi.org/10.29081/jesr.v26i3.217

Ozcelik, B.; Erzincanli, F. 2002. A non-contact end-effector for the handling of garments, Robotica 20(4): 447–450. https://doi.org/10.1017/S0263574702004125

Ozcelik, B.; Erzincanli, F. 2005. Examination of the movement of a woven fabric in the horizontal direction using a non-contact end-effector, The International Journal of Advanced Manufacturing Technology 25(5–6): 527–532. https://doi.org/10.1007/s00170-004-2075-x

Ozcelik, B.; Erzincanli, F.; Findik, F. 2003. Evaluation of handling results of various materials using a non‐contact end‐effector, Industrial Robot 30(4): 363–369. https://doi.org/10.1108/01439910310479630

Park, J. Y.; Moon, H. 2012. Design and control of 2 degree-of-freedom air jet array for manipulating flat objects, in 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 26–28 November 2012, Daejeon, South Korea, 467–468. https://doi.org/10.1109/URAI.2012.6463042

Petterson, A.; Ohlsson, T.; Caldwell, D. G.; Davis, S.; Gray, J. O.; Dodd, T. J. 2010. A Bernoulli principle gripper for handling of planar and 3D (food) products, Industrial Robot 37(6): 518–526. https://doi.org/10.1108/01439911011081669

Pfeffer, M.; Goth, C.; Craiovan, D.; Franke, J. 2011. 3D-assembly of molded interconnect devices with standard SMD pick & place machines using an active multi axis workpiece carrier, in 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM), 25–27 May 2011, Tampere, Finland, 1–6. https://doi.org/10.1109/ISAM.2011.5942362

Proc’, Ja. I. 2008. Zahopljuval’ni prystroi’ promyslovyh robotiv. Navchal’nyj posibnyk. Ternopil’: Ternopil’s’kyj derzhavnyj tehnichnyj universytet im. I. Puljuja. 232 s. (in Ukrainian).

Rahul, M.; Sivapirakasam, S. P.; Vishnu, B. R.; Aravind, S. L.; Mohan, S. 2020. Experimental investigation on gripper force of electrically activated non-contact swirl vane gripper, Materials Today: Proceedings 46(19): 9636–9640. https://doi.org/10.1016/j.matpr.2020.07.151

Rajalakshmi, V.; Kavitha, K.; Lavanya, D. 2017. Design and optimization of single head planar Coanda gripper, Advances in Natural and Applied Sciences 11(4): 531–538.

Raval, S.; Patel, B. 2016. A review on grasping principle and robotic grippers, International Journal of Engineering Development and Research 4(1): 483–490. Available from Internet: https://www.ijedr.org/viewfull.php?&p_id=IJEDR1601080

Reddy, P. V. P.; Suresh, V. V. N. S. 2013. A review on importance of universal gripper in industrial robot applications, International Journal of Mechanical Engineering and Robotics Research 2(2): 255–264. Available from Internet: http://www.ijmerr.com/show-117-81-1.html

Reinhart, G.; Straßer, G. 2011. Flexible gripping technology for the automated handling of limp technical textiles in composites industry, Production Engineering 5(3): 301–306. https://doi.org/10.1007/s11740-011-0306-1

Reinhart, G.; Straβer, G.; Ehinger, C. 2010. Highly flexible automated manufacturing of composite structures consisting of limp carbon fibre textiles, SAE International Journal of Aerospace 2(1): 181–187. https://doi.org/10.4271/2009-01-3213

Renganathan, S. 2020. Flexible filaments for 3D printing – simply explained, All3DP Magazine, 20 October 2020. Available from: https://all3dp.com/2/flexible-3d-printing-filament-which-should-you-chose

Renn, J.-C.; Chen, C.-Y.; Lu, C.-H. 2008. Gap control for a proportional floating vacuum pad, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222(11): 2069–2076. https://doi.org/10.1243/09544062JMES1079

Sam, R.; Buniyamin, N. 2012. A Bernoulli principle based flexible handling device for automation of food manufacturing processes, in 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), 26–29 November 2012, Saigon, Vietnam, 214–219. https://doi.org/10.1109/ICCAIS.2012.6466590

Samad, A.; Omar, R.; Hewakandamby, B.; Lowndes, I.; Short, G. 2012. Swirl induced flow through a Venturi-ejector, in ASME 2012 Fluids Engineering Division Summer Meeting Collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels, 8–12 July 2012, Rio Grande, Puerto Rico, US, 65–70. https://doi.org/10.1115/FEDSM2012-72093

Sanneman, L.; Fourie, C.; Shah, J. 2020. The State of Industrial Robotics: Emerging Technologies, Challenges, and Key Research Directions. Industrial Performance Center, Massachusetts Institute of Technology, Cambridge, MA, US. 33 p. Available from Internet: https://workofthefuture.mit.edu/research-post/the-state-of-industrial-robotics-emerging-technologies-challenges-and-key-research-directions/

Savin-Czeizler, A.; Lang, K. 1985. Gripping Device. United States Patent 4,502,721.

Savkiv, V. B.; Bihus, V. V.; Skochylias, V. V. 2012a. Strumenevyj zahopljuval’no-orijentujuchyj prystrij [Jet gripping-orienting device]. UA Patent No 70381. https://sis.ukrpatent.org/uk/search/detail/702377/ (in Ukrainian).

Savkiv, V. B.; Prots, Y. I.; Skochylias, V. V.; Fendio, O. M.; Savkiv, H. V.; Fedoriv, P. S.; Bihus, V. V. 2012b. Zahopljuval’nyj prystrij [Gripping device]. UA Patent No 64472. Available from Internet: https://sis.ukrpatent.org/uk/search/detail/678366/ (in Ukrainian).

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Fendo, O. 2017a. Justification of design and parameters of Bernoulli–vacuum gripping device, International Journal of Advanced Robotic Systems 14(6): 1729881417741740. https://doi.org/10.1177/1729881417741740

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Mikhalishin, M. 2017b. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices, Journal of Electrical Engineering 68(6): 496–502. https://doi.org/10.1515/jee-2017-0087

Savkiv, V.; Mykhailyshyn, R.; Fendo, O.; Mykhailyshyn, M. 2017c. Orientation modeling of Bernoulli gripper device with off-centered masses of the manipulating object, Procedia Engineering 187: 264–271. https://doi.org/10.1016/j.proeng.2017.04.374

Savkiv, V. B.; Mykhailyshyn, R. I.; Duchon, F.; Maruschak, P. O.; Prentkovskis, O. 2018a. Substantiation of Bernoulli grippers parameters at non-contact transportation of objects with a displaced center of mass, in Transport Means 2018: Proceedings of the 22nd International Scientific Conference, 3–5 October 2018, Trakai, Lithuania, 3: 1370–1375.

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Mikhalishin, M. 2018b. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc, International Journal of Advanced Robotic Systems 15(2): 1729881418762670. https://doi.org/10.1177/1729881418762670

Savkiv, V.; Mykhailyshyn, R.; Duchon, F. 2019a. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass, Vacuum 159: 524–533. https://doi.org/10.1016/j.vacuum.2018.11.005

Savkiv, V.; Mykhailyshyn, R.; Maruschak, P.; Chovanec, L.; Prada, E.; Virgala, I.; Prentkovskis, O. 2019b. Optimization of design parameters of Bernoulli gripper with an annular nozzle, in Transport Means 2019: Proceedings of the 23rd International Scientific Conference, 2–4 October 2019, Palanga, Lithuania, 1: 423–428.

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Maruschak, P. 2020a. Justification of influence of the form of nozzle and active surface of bernoulli gripping devices on its operational characteristics, in K. Gopalakrishnan, O. Prentkovskis, I. Jackiva, R. Junevičius (Eds.). TRANSBALTICA XI: Transportation Science and Technology, 2–3 May 2019, Vilnius, Lirhuania, 263–272. https://doi.org/10.1007/978-3-030-38666-5_28

Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Maruschak, P.; Prentkovskis, O.; Diahovchenko, I. 2020b. Analysis of operational characteristics of pneumatic device of industrial robot for gripping and control of parameters of objects of manipulation, in K. Gopalakrishnan, O. Prentkovskis, I. Jackiva, R. Junevičius (Eds.). TRANSBALTICA XI: Transportation Science and Technology, 504–510. https://doi.org/10.1007/978-3-030-38666-5_53

Savkiv, V.; Mykhailyshyn, R.; Maruschak, P.; Diahovchenko, I.; Duchon, F.; Chovanec, Ľ.; Hutsaylyuk, V. 2020c. Gripping devices of industrial robots for manipulating offset dish antenna billets, in International Scientific Conference Intelligent Technologies in Logistics and Mechatronics Systems – ITELMS’2020, 1 October, 2020, Panevėžys, Lithuania, 71–79.

Savkiv, V.; Mykhailyshyn, R.; Maruschak, P.; Kyrylovych, V.; Duchon, F.; Chovanec, Ľ. 2021. Gripping devices of industrial robots for manipulating offset dish antenna billets and controlling their shape, Transport 36(1): 63–74. https://doi.org/10.3846/transport.2021.14622

Schaffrath, R.; Jäger, E.; Winkler, G.; Doant, J.; Todtermuschke, M. 2021. Vacuum gripper without central compressed air supply, Procedia CIRP 97: 76–80. https://doi.org/10.1016/j.procir.2020.05.207

Schmalz. 2021a. Floating Suction Cups SBS-ESD. J. Schmalz GmbH, Glatten, Germany. Available from Internet: https://www.schmalz.com/en/vacuum-technology-for-automation/vacuum-components/special-grippers/floating-suction-cups/floating-suction-cups-sbs-esd-321262/

Schmalz. 2021b. Flow Grippers SCG. J. Schmalz GmbH, Glatten, Germany. Available from Internet: https://www.schmalz.com/en/vacuum-technology-for-automation/vacuum-components/special-grippers/flow-grippers/flow-grippers-scg-306274/

Schmalz. 2021c. Rob-Set VEE UR. J. Schmalz GmbH, Glatten, Germany. Available from Internet: https://www.schmalz.com/en/vacuum-technology-for-robotics/handling-sets/handling-sets-vee-312482/10.01.36.00280

Schunk Inc. 2021. Robot Accessories: Perfection in End-of-Arm Competence. Schunk GmbH & Co. KG. Available from Internet: https://schunk.com/de_en/gripping-systems/category/gripping-systems/robot-accessories/

Shi, K.; Li, X. 2018. Experimental and theoretical study of dynamic characteristics of Bernoulli gripper, Precision Engineering 52: 323–331. https://doi.org/10.1016/j.precisioneng.2018.01.006

Shi, K.; Li, X. 2016. Optimization of outer diameter of Bernoulli gripper, Experimental Thermal and Fluid Science 77: 284–294. https://doi.org/10.1016/j.expthermflusci.2016.03.024

Shi, K.; Li, X. 2020. Stiffness improvement of swirl gripper based on gap height and force estimation, Precision Engineering 62: 134–142. https://doi.org/10.1016/j.precisioneng.2019.11.014

Sierra, J.; Ardila, J.; Vélez, S.; Maya, D.; Hincapié, D. 2017. Simulation analysis of a Coandă-effect ejector using CFD, Tecciencia 12(22): 17–25. https://doi.org/10.18180/tecciencia.2017.22.3

SMC Corporation. 2021a. Multistage Ejector – ZL. SMC Corporation. Available from Internet: https://www.smc.eu/en-eu/products/zl~31359~nav?productId=161680

SMC Corporation. 2021b. Non-Contact Gripper, Cyclone Type – XT661. SMC Corporation. Available from Internet: https://www.smc.eu/en-eu/products/cyclone-type-xt661~

SMC Corporation. 2021c. Vacuum Pad with Ejector – ZHP. SMC Corporation. Available from Internet: https://www.smc.eu/en-eu/products/vacuum-pad-with-ejector-zhp~135148~cfg

SMC Corporation. 2021d. XT661-X427 Series – Bernoulli Type Non-Contact Gripper. SMC Corporation. Available from Internet: https://www.smcusa.com/new-products/xt661-x427-series-bernoulli-type-non-contact-gripper/

Stühm, K.; Tornow, A.; Schmitt, J.; Grunau, L.; Dietrich, F.; Dröder, K. 2014. A novel gripper for battery electrodes based on the Bernoulli-principle with integrated exhaust air compensation, Procedia CIRP 23: 161–164. https://doi.org/10.1016/j.procir.2014.10.065

Tai, K.; El-Sayed, A.-R.; Shahriari, M.; Biglarbegian, M.; Mahmud, S. 2016. State of the art robotic grippers and applications, Robotics 5(2): 11. https://doi.org/10.3390/robotics5020011

Takahashi, T.; Nagato, K.; Suzuki, M.; Aoyagi, S. 2013. Flexible vacuum gripper with autonomous switchable valves, in 2013 IEEE International Conference on Robotics and Automation, 6–10 May 2013, Karlsruhe, Germany, 364–369. https://doi.org/10.1109/ICRA.2013.6630601

Tawk, C.; Gillett, A.; In Het Panhuis, M.; Spinks, G. M.; Alici, G. 2019. A 3D-printed omni-purpose soft gripper, IEEE Transactions on Robotics 35(5): 1268–1275. https://doi.org/10.1109/TRO.2019.2924386

Toklu, E.; Erzincanli, F. 2012. Modeling of radial flow on a non-contact end effector for robotic handling of non-rigid material, Journal of Applied Research and Technology 10(4): 590–596. https://doi.org/10.22201/icat.16656423.2012.10.4.382

Trommelen, M. H. T. 2011. Development of a Medical Bernoulli Gripper. Graduation Thesis. Delft University of Technology, The Netherlands. 40 p. Available from Internet: http://resolver.tudelft.nl/uuid:949e3227-9677-47c8-be16-3962ada7ebf8

Villani, L.; Ficuciello, F.; Lippiello, V.; Palli, G.; Ruggiero, F.; Siciliano, B. 2012. Grasping and control of multi-fingered hands, Springer Tracts in Advanced Robotics 80: 219–266. https://doi.org/10.1007/978-3-642-29041-1_5

Wagner, M.; Chen, X.; Nayyerloo, M.; Wang, W.; Chase, J. G. 2008. A novel wall climbing robot based on Bernoulli effect, in 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, 12–15 October 2008, Beijing, China, 210–215. https://doi.org/10.1109/MESA.2008.4735656

Wang, C.; Zhao, J.; Li, X. 2019. Effect of chamber diameter of vortex gripper on maximum suction force and flow field, Advances in Mechanical Engineering 11(3): 1–13. https://doi.org/10.1177/1687814019837401

Winborne, D. A.; Nordine, P. C.; Rosner, D. E.; Marley, N. F. 1976. Aerodynamic levitation technique for containerless high temperature studies on liquid and solid samples, Metallurgical Transactions B 7(4): 711–713. https://doi.org/10.1007/BF02698607

Wolf, A.; Schunk, H. 2019. Grippers in Motion: the Fascination of Automated Handling Tasks. Carl Hanser Verlag GmbH & Co. KG. 331 p. https://doi.org/10.3139/9781569907153

Wu, F.; Li, Z. 2020. Optimisation analysis of structural parameters of an annular slot ejector based on the Coanda effect, Mathematical Problems in Engineering 2020: 8951353. https://doi.org/10.1155/2020/8951353

Wu, Q.; Ye, Q.; Meng, G. X. 2012. Experimental and numerical study of vortex gripper with a diversion body, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226(6): 1526–1534. https://doi.org/10.1177/0954406211423585

Wu, Q.; Ye, Q.; Meng, G. 2013. Particle image velocimetry studies on the swirling flow structure in the vortex gripper, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227(9): 1927–1937. https://doi.org/10.1177/0954406212469323

Xie, Y. 1993. Reduced-Order Dynamic Modelling of Complex Structures Based on Modal Participation. PhD Dissertation. Case Western Reserve University, Cleveland, OH, US. 190 p. Available from Internet: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=case1057091553

Xin, L.; Zhong, W.; Kagawa, T.; Liu, H.; Tao, G. 2016. Development of a pneumatic sucker for gripping workpieces with rough surface, IEEE Transactions on Automation Science and Engineering 13(2): 639–646. https://doi.org/10.1109/TASE.2014.2361251

Xu, E.; Jiang, X.; Ding, L. 2020. Optimizing conical nozzle of Venturi ejector in ejector loop reactor using computational fluid dynamics, Korean Journal of Chemical Engineering 37(11): 1829–1835. https://doi.org/10.1007/s11814-020-0607-1

Xu, J.; Liu, X.; Pang, M. 2016. Numerical and experimental studies on transport properties of powder ejector based on double Venturi effect, Vacuum 134: 92–98. https://doi.org/10.1016/j.vacuum.2016.10.007

Zhao, J.; Li, X. 2016. Effect of supply flow rate on performance of pneumatic non-contact gripper using vortex flow, Experimental Thermal and Fluid Science 79: 91–100. https://doi.org/10.1016/j.expthermflusci.2016.06.020

Zhao, J.; Li, X. 2021a. Experimental investigation on nozzle diameter of vortex gripper, Assembly Automation 41(1): 1–9. https://doi.org/10.1108/AA-03-2019-0055

Zhao, J.; Li, X. 2021b. Two-dimensional pressure field and backflow in the annular skirt of vortex gripper, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235(20): 4954–4966. https://doi.org/10.1177/0954406220974044

Zhao, J.; Li, X.; Bai, J. 2018. Experimental study of vortex suction unit-based wall-climbing robot on walls with various surface conditions, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232(21): 3977–3991. https://doi.org/10.1177/0954406218791203

Zhao, J.; Wang, C.; Li, X. 2019. Gap flow with circumferential velocity in annular skirt of vortex gripper, Precision Engineering 57: 64–72. https://doi.org/10.1016/j.precisioneng.2019.03.007

Zheng, Z. J.; Liang, D. T.; Lu, B.; Huang, J. H. 2013. Numerical analysis on the internal flow field and adsorption performance of a non-contact vortex gripper, Applied Mechanics and Materials 433–435: 1959–1964. https://doi.org/10.4028/www.scientific.net/AMM.433-435.1959