Share:


Negative impacts from disruption of road infrastructure element performance on dependent subsystems: methodological framework

    David Rehak Affiliation
    ; David Patrman Affiliation
    ; Pavel Foltin Affiliation
    ; Zdeněk Dvořák Affiliation
    ; Viktor Skrickij Affiliation

Abstract

The critical infrastructure system is determined by subsystems essential for the functioning of the state (such as energy, transport, and emergency services). Disruption to the function of these subsystems would have serious effects on state security, the state economy, and the provisioning of the inhabitants’ basic human needs. Links connect these subsystems (i.e., sectors, subsectors, and elements), and these links ensure that certain subsystems are integrated into each other. Their interactions are derived from the type and intensity of the mutual link. The interlinked subsystems can thus be divided into influencing and dependent ones. The aforementioned mutual links in the critical infrastructure system allow, amongst other things, the spread of impacts of disruptive events amongst the subsystems via cascading effects. Disruptions to the performance of an influencing subsystem may have negative effects on a dependent subsystem, resulting in the spread of cascading effects in the critical infrastructure system. Such effects are often difficult to predict, which reduces the responsiveness of the dependent subsystems. Road transport is one of the most significant influences on critical infrastructure subsystems. For this reason, the article focuses on an indication of the negative effects of disruption of road infrastructure elements on dependent subsystems. The article describes the role of road infrastructure in the context of the critical infrastructure system. Defines the dependent subsystems of road infrastructure, categorises the negative effects, and presents a possible approach to assessing the adverse effects of disruption road infrastructure performance on dependent subsystems.


First published online 10 February 2022

Keyword : critical infrastructure, road transport, performance disruption, cascading effect, dependent subsystems

How to Cite
Rehak, D., Patrman, D., Foltin, P., Dvořák, Z., & Skrickij, V. (2021). Negative impacts from disruption of road infrastructure element performance on dependent subsystems: methodological framework. Transport, 36(6), 510-524. https://doi.org/10.3846/transport.2021.16400
Published in Issue
Dec 31, 2021
Abstract Views
544
PDF Downloads
380
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

AllTraIn. 2015. All-Hazard Guide for Transport Infrastructure. AllTraIn Project. Bergisch Gladbach, Germany Available from Internet: https://www.alltrain-project.eu

Armenakis, C.; Du, E. X.; Natesan, S.; Persad, R. A.; Zhang, Y. 2017. Flood risk assessment in urban areas based on spatial analytics and social factors, Geosciences 7(4): 123. https://doi.org/10.3390/geosciences7040123

Barrett, C.; Beckman, R.; Channakeshava, K.; Huang, F.; Kumar, V. S. A.; Marathe, A.; Marathe, M. V.; Pei, G. 2010. Cascading failures in multiple infrastructures: from transportation to communication network, in 2010 5th International Conference on Critical Infrastructure (CRIS), 20–22 September 2010, Beijing, China, 1–8. https://doi.org/10.1109/CRIS.2010.5617569

Basak, S.; Dubey, A.; Bruno, L. 2019. Analyzing the cascading effect of traffic congestion using LSTM networks, in 2019 IEEE International Conference on Big Data (Big Data), 9–12 December 2019, Los Angeles, CA, US, 2144–2153. https://doi.org/10.1109/BigData47090.2019.9005995

Bompard, E.; Napoli, R.; Xue, F. 2009. Analysis of structural vulnerabilities in power transmission grids, International Journal of Critical Infrastructure Protection 2(1–2): 5–12. https://doi.org/10.1016/j.ijcip.2009.02.002

Brabcova, V.; Slivkova, S.; Rehak, D.; Toseroni, F.; Havko, J. 2018. Assessing the cascading effect of energy and transport critical infrastructure elements: case study, Communications – Scientific Letters of the University of Žilina 20(2): 8–15. https://doi.org/10.26552/com.C.2018.2.8-15

Brunclik, M.; Vogal, L.; Foltin, P. 2018. Computer modelling and simulation of the supply chain in military operation, in 18th International Scientific Conference “Business Logistics in Modern Management”, 11–12 October 2018, Osijek, Croatia, 671–682. https://hrcak.srce.hr/ojs/index.php/plusm/article/view/7918

Cai, B.; Xie, M.; Liu, Y. H.; Liu, Y.; Feng, Q. 2018. Availability-based engineering resilience metric and its corresponding evaluation methodology, Reliability Engineering & System Safety 172: 216–224. https://doi.org/10.1016/j.ress.2017.12.021

Calka, B.; Nowak da Costa, J.; Bielecka, E. 2017. Fine scale population density data and its application in risk assessment, Geomatics, Natural Hazards and Risk 8(2): 1440–1455. https://doi.org/10.1080/19475705.2017.1345792

Carhart, N. J.; Rosenberg, G. 2016. A framework for characterising infrastructure interdependencies, International Journal of Complexity in Applied Science and Technology 1(1): 35–60. https://doi.org/10.1504/IJCAST.2016.10002359

Casalicchio, E.; Setola, R.; Bologna, S. 2010. A two-stage approach to simulate interdependent critical infrastructures, in 2010 Complexity in Engineering, 22–24 February 2010, Rome, Italy, 76–78. https://doi.org/10.1109/COMPENG.2010.33

Cats, O.; Hijner, A. M. 2021. Quantifying the cascading effects of passenger delays, Reliability Engineering & System Safety 212: 107629. https://doi.org/10.1016/j.ress.2021.107629

Cimellaro, G. P. 2016. Urban Resilience for Emergency Response and Recovery: Fundamental Concepts and Applications. Springer. 522 p. https://doi.org/10.1007/978-3-319-30656-8

Chopra, S. S.; Dillon, T.; Bilec, M. M.; Khanna, V. 2016. A network-based framework for assessing infrastructure resilience: a case study of the London metro system, Journal of the Royal Society Interface 13(118): 20160113. https://doi.org/10.1098/rsif.2016.0113

Cools, M.; Moons, E.; Wets, G. 2010. Assessing the impact of weather on traffic intensity, Weather, Climate, and Society 2(1): 60–68. https://doi.org/10.1175/2009WCAS1014.1

Cumelles, J.; Lordan, O.; Sallan, J. M. 2021. Cascading failures in airport networks, Journal of Air Transport Management 92: 102026. https://doi.org/10.1016/j.jairtraman.2021.102026

De Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P. J. 2015. Flood risk assessments at different spatial scales, Mitigation and Adaptation Strategies for Global Change 20(6): 865–890. https://doi.org/10.1007/s11027-015-9654-z

De Porcellinis, S.; Panzieri, S.; Setola, R. 2009. Modelling critical infrastructure via a mixed holistic reductionistic approach, International Journal of Critical Infrastructures 5(1–2): 86–99. https://doi.org/10.1504/IJCIS.2009.022851

Dekker, M. M.; Panja, D. 2021. Cascading dominates large-scale disruptions in transport over complex networks, PLoS ONE 16(1): e0246077. https://doi.org/10.1371/journal.pone.0246077

Du, W.-B.; Zhang, M.-Y.; Zhang, Y.; Cao, X.-B.; Zhang, J. 2018. Delay causality network in air transport systems, Transportation Research Part E: Logistics and Transportation Review 118: 466–476. https://doi.org/10.1016/j.tre.2018.08.014

Dudenhoeffer, D. D.; Permann, M. R.; Boring, R. L. 2006a. Decision consequence in complex environments: visualizing decision impact, in 1st Joint Emergency Preparedness and Response/Robotic and Remote Systems Topical Meeting 2006: Sharing Solutions for Emergencies and Hazardous Environments, 11–16 February 2006, Salt Lake City, UT, US, 1: 211–218.

Dudenhoeffer, D. D.; Permann, M. R.; Manic, M. 2006b. CIMS: a framework for infrastructure interdependency modeling and analysis, in Proceedings of the 2006 Winter Simulation Conference, 3–6 December 2006, Monterey, CA, US, 478–485. https://doi.org/10.1109/WSC.2006.323119

Dvořák, Z.; Sventeková, E.; Řehák, D.; Čekerevac, Z. 2017. Assessment of critical infrastructure elements in transport, Procedia Engineering 187: 548–555. https://doi.org/10.1016/j.proeng.2017.04.413

EC. 2020. Proposal for a Directive of the European Parliament and of the Council on the Resilience of Critical Entities. COM/2020/829 Final. European Commission (EC), Brussels, Belgium. Available from Internet: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:829:FIN

EUCO. 2008. Council Directive 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve their Protection. European Council (EUCO). Available from Internet: http://data.europa.eu/eli/dir/2008/114/oj

Fekete, A. 2020. Critical infrastructure cascading effects. Disaster resilience assessment for floods affecting city of Cologne and Rhein-Erft-Kreis, Journal of Flood Risk Management 13(2): e312600. https://doi.org/10.1111/jfr3.12600

Findley, D. J.; Schroeder, B. J.; Cunningham, C. M.; Brown, T. H. 2015. Highway Engineering: Planning, Design, and Operations. Butterworth-Heinemann. 722 p.

Foudi, S.; Osés-Eraso, N.; Tamayo, I. 2015. Integrated spatial flood risk assessment: the case of Zaragoza, Land Use Policy 42: 278–292. https://doi.org/10.1016/j.landusepol.2014.08.002

Giannopoulos, G.; Filippini, R.; Schimmer, M. 2012. Risk Assessment Methodologies for Critical Infrastructure Protection. Part I: a State of the Art. Publications Office of the European Union, Luxembourg. 53 p. https://doi.org/10.2788/22260

He, Z.; Guo, J.-N.; Xu, J.-X. 2019. Cascade failure model in multimodal transport network risk propagation, Mathematical Problems in Engineering 2019: 3615903. https://doi.org/10.1155/2019/3615903

Hromada, M.; Rehak, D.; Lukas, L. 2021. Resilience assessment in electricity critical infrastructure from the point of view of converged security, Energies 14(6): 1624. https://doi.org/10.3390/en14061624

IRDR. 2014. IRDR Peril Classification and Hazard Glossary. Integrated Research on Disaster Risk (IRDR). Beijing, China. 28 p.

Jacobsen, J. K. S.; Leiren, M. D.; Saarinen, J. 2016. Natural hazard experiences and adaptations: a study of winter climate-induced road closures in Norway, Norwegian Journal of Geography 70(5): 292–305. https://doi.org/10.1080/00291951.2016.1238847

Jamal, H. 2017. Highway Capacity: Definition, Types & Factors. Available from Internet: https://www.aboutcivil.org/highwaycapacity-definition-types-factors.html

Johansson, J.; Hassel, H. 2010. An approach for modelling interdependent infrastructures in the context of vulnerability analysis, Reliability Engineering & System Safety 95(12): 1335–1344. https://doi.org/10.1016/j.ress.2010.06.010

Keller, S.; Atzl, A. 2014. Mapping natural hazard impacts on road infrastructure – the extreme precipitation in Baden-Württemberg, Germany, June 2013, International Journal of Disaster Risk Science 5(3): 227–241. https://doi.org/10.1007/s13753-014-0026-1

Kelly, S. 2015. Estimating economic loss from cascading infrastructure failure: a perspective on modelling interdependency, Infrastructure Complexity 2: 7. https://doi.org/10.1186/s40551-015-0010-y

Kozine, I.; Petrenj, B.; Trucco, P. 2018. Resilience capacities assessment for critical infrastructures disruption: the READ framework (part 1), International Journal of Critical Infrastructures 14(3): 199–220. https://doi.org/10.1504/IJCIS.2018.10015604

Labaka, L.; Hernantes, J.; Sarriegi, J. M. 2016. A holistic framework for building critical infrastructure resilience, Technological Forecasting and Social Change 103: 21–33. https://doi.org/10.1016/j.techfore.2015.11.005

Lam, C. Y.; Tai, K. 2020. Network topological approach to modeling accident causations and characteristics: analysis of railway incidents in Japan, Reliability Engineering & System Safety 193: 106626. https://doi.org/10.1016/j.ress.2019.106626

Ledvinová, M. 2008. Dopravní význam a kapacita pozemních komunikací, Perner’s Contacts 3(4): 68–73. Available from Internet: https://pernerscontacts.upce.cz/index.php/perner/article/view/1317 (in Czech).

Lee, E. E.; Mitchell, J. E.; Wallace, W. A. 2007. Restoration of services in interdependent infrastructure systems: a network flows approach, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37(6): 1303–1317. https://doi.org/10.1109/TSMCC.2007.905859

Levinson, D. M.; Kanchi, S. 2002. Road capacity and the allocation of time, Journal of Transportation and Statistics 5(1): 25–46.

Liu, M.; Xu, W. 2013. The approach for critical infrastructure sectors classification using the inoperability input–output model (IIM), in 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, 23–24 November 2013, Xi’an, China, 7–10. https://doi.org/10.1109/ICIII.2013.6703668

MacDermott, Á.; Hurst, W.; Shi, Q.; Merabti, M. 2014. Simulating critical infrastructure cascading failure, in 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 26–28 March 2014, Cambridge, UK, 324–329. https://doi.org/10.1109/UKSim.2014.85

Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M. L.; Di Ruocco, A. 2012. Basic principles of multi-risk assessment: a case study in Italy, Natural Hazards 62(2): 551–573. https://doi.org/10.1007/s11069-012-0092-x

McDaniels, T.; Chang, S.; Peterson, K.; Mikawoz, J.; Reed, D. 2007. Empirical framework for characterizing infrastructure failure interdependencies, Journal of Infrastructure Systems 13(3): 175–184. https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(175)

Min, H.-S. J.; Beyeler, W.; Brown, T.; Son, Y. J.; Jones, A. T. 2007. Toward modeling and simulation of critical national infrastructure interdependencies, IIE Transactions 39(1): 57–71. https://doi.org/10.1080/07408170600940005

Nan, C.; Sansavini, G. 2017. A quantitative method for assessing resilience of interdependent infrastructures, Reliability Engineering & System Safety 157: 35–53. https://doi.org/10.1016/j.ress.2016.08.013

NIAC. 2009. Critical Infrastructure Resilience: Final Report and Recommendations. National Infrastructure Advisory Council (NIAC), Washington, DC, US. 54 p.

Ouyang, M. 2014. Review on modeling and simulation of interdependent critical infrastructure systems, Reliability Engineering & System Safety 121: 43–60. https://doi.org/10.1016/j.ress.2013.06.040

Ouyang, M.; Hong, L.; Mao, Z.-J.; Yu, M.-H.; Fei, Q. 2009. A Methodological Approach to Analyse Vulnerability of Interdependent Infrastructures, Simulation Modelling Practice and Theory 17(5): 817–828. https://doi.org/10.1016/j.simpat.2009.02.001

Pacinda, Š. 2010. Síťová analýza a metoda KARS, The Science for Population Protection 2(1): 1–22. Available from Internet: http://www.population-protection.eu/prilohy/casopis/8/56.pdf (in Czech).

Papilloud, T.; Röthlisberger, V.; Loreti, S.; Keiler, M. 2020. Flood exposure analysis of road infrastructure – comparison of different methods at national level, International Journal of Disaster Risk Reduction 47: 101548. https://doi.org/10.1016/j.ijdrr.2020.101548

Patrman, D.; Splichalova, A.; Rehak, D.; Onderkova, V. 2019. Factors influencing the performance of critical land transport infrastructure elements, Transportation Research Procedia 40: 1518–1524. https://doi.org/10.1016/j.trpro.2019.07.210

Pederson, P.; Dudenhoeffer, D.; Hartley, S.; Permann, M. 2006. Critical Infrastructure Interdependency Modeling: a Survey of U.S. and International Research. Idaho National Laboratory, Idaho Falls, ID, US. 126 p.

Petit, F. D. P.; Bassett, G. W.; Black, R.; Buehring, W. A.; Collins, M. J.; Dickinson, D. C.; Fisher, R. E.; Haffenden, R. A.; Huttenga, A. A.; Klett, M. S.; Phillips, J. A.; Thomas, M.; Veselka, S. N.; Wallace, K. E.; Whitfield, R. G.; Peerenboom, J. P. 2013. Resilience Measurement Index: an Indicator of Critical Infrastructure Resilience. Argonne National Laboratory (ANL), Argonne, IL, US. 70 p. https://doi.org/10.2172/1087819

Petit, F.; Verner, D.; Brannegan, D.; Buehring, W.; Dickinson, D.; Guziel, K.; Haffenden, R.; Phillips, J.; Peerenboom, J. 2015. Analysis of Critical Infrastructure: Dependencies and Interdependencies. Argonne National Laboratory (ANL), Argonne, IL, US. 50 p. https://doi.org/10.2172/1184636

Poljanšek, K.; Bono, F.; Gutiérrez, E. 2012. Seismic risk assessment of interdependent critical infrastructure systems: the case of European gas and electricity networks, Earthquake Engineering and Structural Dynamics 41(1): 61–79. https://doi.org/10.1002/eqe.1118

Postance, B.; Hillier, J.; Dijkstra, T.; Dixon, N. 2017. Extending natural hazard impacts: an assessment of landslide disruptions on a national road transportation network, Environmental Research Letters 12(1): 014010. https://doi.org/10.1088/1748-9326/aa5555

Prior, T. 2015. Measuring Critical Infrastructure Resilience: Possible Indicators. Risk And Resilience Report 9. Center for Security Studies (CSS), ETH Zurich, Switzerland. 14 p. Available from Internet: https://css.ethz.ch/en/services/digital-library/publications/publication.html/190875

Pyrgiotis, N.; Malone, K. M.; Odoni, A. 2013. Modelling delay propagation within an airport network, Transportation Research Part C: Emerging Technologies 27: 60–75. https://doi.org/10.1016/j.trc.2011.05.017

Quinn, P. 2013. Road density as a proxy for population density in regional-scale risk modeling, Natural Hazards 65(3): 1227–1248. https://doi.org/10.1007/s11069-012-0379-y

Ramanathan, R. 2004. Indian Transport Towards the New Millennium: Performance, Analysis and Policy. Concept Publishing Co. 212 p.

Rehak, D. 2020. Assessing and strengthening organisational resilience in a critical infrastructure system: case study of the Slovak Republic, Safety Science 123: 104573. https://doi.org/10.1016/j.ssci.2019.104573

Rehak, D.; Markuci, J.; Hromada, M.; Barcova, K. 2016. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection 14: 3–17. https://doi.org/10.1016/j.ijcip.2016.06.002

Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T. 2019. Complex approach to assessing resilience of critical infrastructure elements, International Journal of Critical Infrastructure Protection 25: 125–138. https://doi.org/10.1016/j.ijcip.2019.03.003

Rehak, D.; Hromada, M.; Lovecek, T. 2020. Personnel threats in the electric power critical infrastructure sector and their effect on dependent sectors: overview in the Czech Republic, Safety Science 127: 104698. https://doi.org/10.1016/j.ssci.2020.104698

Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T.; Novotny, P. 2018. Cascading impact assessment in a critical infrastructure system, International Journal of Critical Infrastructure Protection 22: 125–138. https://doi.org/10.1016/j.ijcip.2018.06.004

Rinaldi, S. M.; Peerenboom, J. P.; Kelly, T. K. 2001. Identifying, understanding, and analyzing critical infrastructure interdependencies, IEEE Control Systems Magazine 21(6): 11–25. https://doi.org/10.1109/37.969131

Rodrigue, J.-P. 2020. The Geography of Transport Systems. 5th edition. Routledge. 480 p. https://doi.org/10.4324/9780429346323

Rogers, C. D. F.; Bouch, C. J.; Williams, S.; Barber, A. R. G.; Baker, C. J.; Bryson, J. R.; Chapman, D. N.; Chapman, L.; Coaffee, J.; Jefferson, I.; Quinn, A. D. 2012. Resistance and resilience – paradigms for critical local infrastructure, Proceedings of the Institution of Civil Engineers – Municipal Engineer 165(2): 73–83. https://doi.org/10.1680/muen.11.00030

Saaty, T. L. 1977. A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology 15(3): 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

Schwab, K. (Ed.). 2019. The Global Competitiveness Report 2019. World Economic Forum (WEF), Geneva, Switzerland. 666 p. Available from Internet: https://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf

Serre, D.; Heinzlef, C. 2018. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks, International Journal of Disaster Risk Reduction 30: 235–243. https://doi.org/10.1016/j.ijdrr.2018.02.018

Setola, R.; De Porcellinis, S.; Sforna, M. 2009. Critical infrastructure dependency assessment using the input–output inoperability model, International Journal of Critical Infrastructure Protection 2(4): 170–178. https://doi.org/10.1016/j.ijcip.2009.09.002

Setola, R.; Theocharidou, M. 2016. Modelling dependencies between critical infrastructures, Studies in Systems, Decision and Control 90: 19–41. https://doi.org/10.1007/978-3-319-51043-9_2

Simonovic, S. P.; Arunkumar, R. 2016. Comparison of static and dynamic resilience for a multipurpose reservoir operation, Water Resources Research 52(11): 8630–8649. https://doi.org/10.1002/2016WR019551

Stergiopoulos, G.; Kotzanikolaou, P.; Theocharidou, M.; Gritzalis, D. 2015. Risk mitigation strategies for critical infrastructures based on graph centrality analysis, International Journal of Critical Infrastructure Protection 10: 34–44. https://doi.org/10.1016/j.ijcip.2015.05.003

Stergiopoulos, G.; Kotzanikolaou, P.; Theocharidou, M.; Lykou, G.; Gritzalis, D. 2016. Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures, International Journal of Critical Infrastructure Protection 12: 46–60. https://doi.org/10.1016/j.ijcip.2015.12.002

Sventekova, E.; Leitner, B.; Dvorak, Z. 2017. Transport critical infrastructure in Slovak Republic, in Proceedings of the 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017), 21–24 March 2017, Orlando, FL, US, 212–215. Available from Internet: https://www.iiis.org/cds2017/cd2017spring/papers/za357xp.pdf

Theocharidou, M.; Giannopoulos, G. 2015. Risk Assessment Methodologies for Critical Infrastructure Protection. Part II: a New Approach. Publications Office of the European Union, Luxembourg. 40 p. https://doi.org/10.2788/621843

ToL. 2013. Roads Task Force - Technical Note 10: What is the Capacity of the Road Network for Private Motorised Traffic and how has this Changed Over Time? Transport for London (ToL), UK. 15 p. Available from Internet: https://content.tfl.gov.uk/technical-note-10-what-is-the-capacity-of-the-roadnetwork-for-private-motorised-traffic.pdf

Vlkovský, M.; Ivanuša, T.; Neumann, V.; Foltin, P.; Vlachová, H. 2017. Optimizating cargo security during transport using dataloggers, Journal of Transportation Security 10(3–4): 63–71. https://doi.org/10.1007/s12198-017-0179-4

Voumard, J.; Derron, M.-H.; Jaboyedoff, M. 2018. Natural hazard events affecting transportation networks in Switzerland from 2012 to 2016, Natural Hazards and Earth System Sciences 18(8): 2093–2109. https://doi.org/10.5194/nhess-18-2093-2018

Zhang, P.; Peeta, S. 2011. A generalized modeling framework to analyze interdependencies among infrastructure systems, Transportation Research Part B: Methodological 45(3): 553–579. https://doi.org/10.1016/j.trb.2010.10.001

Zimmerman, R.; Restrepo, C. E. 2009. Analyzing cascading effects within infrastructure sectors for consequence reduction, in 2009 IEEE Conference on Technologies for Homeland Security, 11–12 May 2009, Waltham, MA, US, 165–170. https://doi.org/10.1109/THS.2009.5168029

Zimmerman, R.; Restrepo, C. E. 2006. The next step: quantifying infrastructure interdependencies to improve security, International Journal of Critical Infrastructures 2(2–3): 215–230. https://doi.org/10.1504/IJCIS.2006.009439