On fully discrete Galerkin approximations for the Cahn‐Hilliard equation
Abstract
Standard Galerkin approximations, using smooth splines to solutions of the nonlinear evolutionary Cahn‐Hilliard equation are analysed. The existence, uniqueness and convergence of the fully discrete Crank‐Nicolson scheme are discussed. At last a linearized Galerkin approximation is presented, which is also second order accurate in time fully discrete scheme.
Pilnai diskrečioji Galerkino aproksimacija Cahn-Hilliard lygčiai
Santrauka. Straipsnyje analizuojama standartinė Galerkino aproksimacija nestacionariajai Canh‐Hilliard lygčiai, panaudojant glodžius splainus. Aptarta pilnai diskrečios Cranko‐Nikolsono baigtinių skirtumų schemos sprendinio egzistencija, vienatis ir konvergavimas. Pabaigoje pateikta tiesinė Galerkino diskrečioji schema, kuri yra antros eilės tikslumo pagal laika.
First Published Online: 14 Oct 2010
Keywords:
Cahn‐Hilliard equation, Galerkin scheme, convergence, linearizationHow to Cite
Share
License
Copyright (c) 2004 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2004 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.