On fully discrete Galerkin approximations for the Cahn‐Hilliard equation

    K. Omrani Info

Abstract

Standard Galerkin approximations, using smooth splines to solutions of the nonlinear evolutionary Cahn‐Hilliard equation are analysed. The existence, uniqueness and convergence of the fully discrete Crank‐Nicolson scheme are discussed. At last a linearized Galerkin approximation is presented, which is also second order accurate in time fully discrete scheme.

Pilnai diskrečioji Galerkino aproksimacija Cahn-Hilliard lygčiai

Santrauka. Straipsnyje analizuojama standartinė Galerkino aproksimacija nestacionariajai Canh‐Hilliard lygčiai, panaudojant glodžius splainus. Aptarta pilnai diskrečios Cranko‐Nikolsono baigtinių skirtumų schemos sprendinio egzistencija, vienatis ir konvergavimas. Pabaigoje pateikta tiesinė Galerkino diskrečioji schema, kuri yra antros eilės tikslumo pagal laika.

First Published Online: 14 Oct 2010

Keywords:

Cahn‐Hilliard equation, Galerkin scheme, convergence, linearization

How to Cite

Omrani, K. (2004). On fully discrete Galerkin approximations for the Cahn‐Hilliard equation. Mathematical Modelling and Analysis, 9(4), 313-326. https://doi.org/10.3846/13926292.2004.9637262

Share

Published in Issue
December 31, 2004
Abstract Views
474

View article in other formats

CrossMark check

CrossMark logo

Published

2004-12-31

Issue

Section

Articles

How to Cite

Omrani, K. (2004). On fully discrete Galerkin approximations for the Cahn‐Hilliard equation. Mathematical Modelling and Analysis, 9(4), 313-326. https://doi.org/10.3846/13926292.2004.9637262

Share