Reduction of plane thermoelasticity problem in inhomogeneous strip to integral volterra type equation
Abstract
We have developed a method for analytical solving of the plane thermoelasticity problem in terms of stresses for a strip, which is infinite with respect to width. To derive the governing equations, we have used a method of direct integration of differential equilibrium and compatibility equations. Reducing the governing equations to the integral Volterra type equation of the second kind, we have solved it in Fourier transforms by applying a method of simple iteration.
Nehomogeninio strypo termoelastiškumo uždavinio suvedimas į Volterra tipo integralinę lygtį
Straipsnyje vystomas analizinio sprendinio metodas nehomogeninio strypo termoelastiškumo uždaviniui strypo įtempimams rasti, kai strypo ilgis yra begalinis pločio atžvilgiu. Pagrindinės lygtys išvedamos naudojant diferencialines pusiausvyros ir suderinamumo lygtis ir tiesioginį integravimą. Suvedus pagrindines lygtis į antrojo tipo Volterra integralinę lygtį, naudojant Furje transformaciją, ji sprendžiama paprastosios iteracijos metodu.
First Published Online: 14 Oct 2010
Keywords:
inhomogeneous strip, plane thermoelasticity problemHow to Cite
Share
License
Copyright (c) 2005 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2005 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.