Reduction of plane thermoelasticity problem in inhomogeneous strip to integral volterra type equation

    Yu. V. Tokovyy Info
    A. V. Rychahivskyy Info

Abstract

We have developed a method for analytical solving of the plane thermoelasticity problem in terms of stresses for a strip, which is infinite with respect to width. To derive the governing equations, we have used a method of direct integration of differential equilibrium and compatibility equations. Reducing the governing equations to the integral Volterra type equation of the second kind, we have solved it in Fourier transforms by applying a method of simple iteration.

Nehomogeninio strypo termoelastiškumo uždavinio suvedimas į Volterra tipo integralinę lygtį

Straipsnyje vystomas analizinio sprendinio metodas nehomogeninio strypo termoelastiškumo uždaviniui strypo įtempimams rasti, kai strypo ilgis yra begalinis pločio atžvilgiu. Pagrindinės lygtys išvedamos naudojant diferencialines pusiausvyros ir suderinamumo lygtis ir tiesioginį integravimą. Suvedus pagrindines lygtis į antrojo tipo Volterra integralinę lygtį, naudojant Furje transformaciją, ji sprendžiama paprastosios iteracijos metodu.

First Published Online: 14 Oct 2010

Keywords:

inhomogeneous strip, plane thermoelasticity problem

How to Cite

Tokovyy, Y. V., & Rychahivskyy, A. V. (2005). Reduction of plane thermoelasticity problem in inhomogeneous strip to integral volterra type equation. Mathematical Modelling and Analysis, 10(1), 91-100. https://doi.org/10.3846/13926292.2005.9637274

Share

Published in Issue
March 31, 2005
Abstract Views
515

View article in other formats

CrossMark check

CrossMark logo

Published

2005-03-31

Issue

Section

Articles

How to Cite

Tokovyy, Y. V., & Rychahivskyy, A. V. (2005). Reduction of plane thermoelasticity problem in inhomogeneous strip to integral volterra type equation. Mathematical Modelling and Analysis, 10(1), 91-100. https://doi.org/10.3846/13926292.2005.9637274

Share