A third order correction to the Helmholtz equation

    J. Jegorovs Info
    J. Mohring Info

Abstract

In this work we derive a third order correction to the classical Helmholtz equation. Starting from non‐linear Euler equations and using asymptotical analysis we get a decoupled system of linear, Helmholtz type equations, which are written in terms of the acoustical pressure functions. We present also a rather simple concept of the boundary conditions. Also numerical results and accompanying difficulties are discussed and presented.

Helmholco lygties trečiosios eilės patikslinimas

Remiantis Oilerio lygtimis ir asimptotine analize gautas Helmholco lygties trečiosios eilės patikslinimas. Akustiniam slėgiui gauta Helmholco tipo lygtis bei jai išvestos sąlygos. Pateikti skaitinio modeliavimo rezultatai.

First Published Online: 14 Oct 2010

Keywords:

non‐linear acoustics, Euler equations, asymptotic analysis, scaling, Helmholtz type equation, pressure, displacement, Lagrangian coordinates, non‐homogeneous Neumann boundary conditions, radiation boundary conditions

How to Cite

Jegorovs, J., & Mohring, J. (2005). A third order correction to the Helmholtz equation. Mathematical Modelling and Analysis, 10(1), 51-62. https://doi.org/10.3846/13926292.2005.9637270

Share

Published in Issue
March 31, 2005
Abstract Views
459

View article in other formats

CrossMark check

CrossMark logo

Published

2005-03-31

Issue

Section

Articles

How to Cite

Jegorovs, J., & Mohring, J. (2005). A third order correction to the Helmholtz equation. Mathematical Modelling and Analysis, 10(1), 51-62. https://doi.org/10.3846/13926292.2005.9637270

Share