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Abstract. In this work we derive a third order correction to the claaki¢elmholtz equation.
Starting from non-linear Euler equations and using asytigaticanalysis we get a decoupled
system of linear, Helmholtz type equations, which are emifn terms of the acoustical pres-
sure functions. We present also a rather simple concepteobttundary conditions. Also
numerical results and accompanying difficulties are disedsind presented.
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1. Introduction

If a bass loudspeaker is run at high power, owing to the loguescy, the displace-
ments of the membrane and of the air in the reflex tube may dxaemntimeter.
Hence, linear acoustic approximation is no longer appleadolving the complete
Euler equations, however, requires an unreasonably hight.eApplying asympto-
tical analysis and assuming irrotational airflow one wasg édderive a second order
correction to the classical Helmholtz equation from thé Euler equations. This
correction is again of Helmholtz type with non—homogene@mig hand side, which
depends only on the first order solution and its derivatigcéq3]. To estimate the
significance of higher order corrections at least the thidkocorrection is needed.
The model in [3] was based on Lagrangian coordinates, héme@atural unknown
function was the displacement functidri¢, «), however, we are interested in the
behaviour of the acoustical pressure functidon ).

2. Isentropic Euler Equations

We start from the isentropic Euler equations written in Ealecoordinate system:
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% +divg (pu) = 0 (conservation of mass) (2.1)
p {% + (u,Vg) u] + Vixp =0 (conservation of momentum) (2.2)
vy
L. (ﬁ) =0 (isentropic) (2.3)
Po Po

Densityp, pressurg and velocityu are functions of the timé > 0 and the position
x € Q C R3, where '~" denotes Eulerian coordinateg.is the gas specific heat
ratio. pg andp, are the values of density and pressure at rest, respecBB@ydary

conditions will be discussed later.

In our case we consider a domain, which is changing in timeajiipens due to
oscillations of the membrane. Because of this we transfoemetuations (2.1)-(2.3)
into Lagrangian coordinate systefh «). Such transformation allows us to intro-
duce new unknown functioh(t, ), which is called the displacement (see [3]). In
Lagrangian coordinate system the equations (2.1)—(2e3yansformed into the fol-
lowing equation:

0°%h c? _
12— = 0 v, [(detF)]" 2.4
G = 7o Vxl(dew)] (2.4)
oh; \*
whereF = (61-3- + 8—1) andcy is the speed of the sound at rest.
Ly 1,j=1

2.1. Asymptotic Analysis and Expansions

In order to do linearization we apply the asymptotic analy3o do so, we have

to scale the equation (2.4). We introduce new dimensionlagables¢ := rx,

7 := wt and the scaled displacemept= h/l, wherex is so—called wave number,

[ is a characteristic amplitude of the membrane oscillatamndw is the angular

frequency. We define some quantity= xl. This quantity for loww frequencies has

to be small compared tb Using these new variables we scale the equation (2.4):
9’n 1

tY 1—v
P = 1 Vel(der) (2.5)

whereF = (6-- + €%>3
1] 857

Assume, without any proof of the convergence, that the degyhent function

n (7, &) has an expansion of the form (perfect harmonic excitatich@fmembrane

is assumed):

i,j=1

n(m,€) =R (N, (§) ) +eR (05 (§) ¥ + 62 (€))
+e®R (ns (€)™ +05(&)e™) + 0 (7). (2.6)

At the same time we also assume existence of the expansitirefpressure function
p (7, &), which will be frequently used in the following analysis:
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p(r,€) = poc2R % +epr (€) € + €2 (2 (€) 2 + 42 (£))
+e% (p3 (€) ¥ +q3(€)e™)] + O (). (2.7)

Substituting the expression (2.6) into the equation (Z6lecting terms for equal
powers of: and for equal time factord”, e2™ ande™ we end up with the following
equations for the functiong, , n, andn;:

Ve (Ve,my) +my =0, (2.8)

v Om; On
Ve (Veoms) +4m = S (= ) (Ve = (o) + 52 524,
J

(2.9)

Ve

Ve (Ve,ms) +9n3 = 7{—

(v —1)?
12

<V§,771>3 —(N1;m2) (2.10)

Onij O B lanlj Ok ONim . ON1j ONag
O 08 6 0& 0&n OE; 0. 08

3 (9771 ; 6771 j 6771 j T
+(y—=1)(Ve,my) <V57772>] -3 ( 855 725 (%; n2; 85; 772;') .

-1

4

<V§7n1>

Here the Einstein’'s summation convention is assumed.

2.2. Non—existence of the potential af)5

Assume for the moment, that the functiong, n, have potentials, i.ed ¢, and

¢2 such thatn, = V¢ andn, = Ve¢o. Inserting these expressions into the
equations (2.8) and (2.9) and integrating both left anctigind sides of the resulting
expressions with respect £, i = 1, 2, 3 (assume the integration constants equal to
zero) we end up with the equations for the functignandgs:

Achr+¢1 =0, (2.11)

1 2 2 ¢\’
Acta+ 102 = 2 | (- )6 — (Ve +(a§ja§k) @)

These are exactly the equations described in [3], whichherbasis for the equations
written in terms of the functiong, andp, what we are interested in.

Assume the existence of a potential of the functigni.e.n; = V¢¢s3, and try
to integrate the right hand side of the equation (2.10) waedpect ta;, i = 1,2, 3.
The last term of the right hand side of the equation (2.1®rafte integration, in
general, gives three different results depending on trextion of the integration:

D*¢1 0o #/ D*¢1 O #/ D’ O

oei0g; 0, ™ 7 | d0g 06, 7 | ags0e, v,
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This means that we have got a contradiction (according tod2oé’s lemma, cf.
[1]) andn4 could not have a potential. Hence, we cannot derive the et the

function¢3 and, hence, we cannot derive the equation for the fungtiamsing the
same technique as in [3].

Remark 1 Another proof of non—existence of the potential of the fiorcy;, could
be done if we apply the rot operator to the equation (2.10)iavektigate the prop-
erties of this new equality.

2.3. Third order correction

In order to derive the equation for the functipnavoiding the difficulties discussed
above, we consider isentropic state equation written inrdgjan coordinates, cf.

[3]: ,
p= % (detF) " . (2.13)

Rewriting the right hand side of the equation (2.13) in teohg,, n, andn;, col-
lecting the terms of equal powers efand time factors, and comparing with the
relation (2.7), we end up with the relations for the funcsgnp, p, andps:

p=—(Vem), (2.14)

o Y 2 10m; O

(2.15)

10m; Ot ° 3

Y
p3 = — <v57773> + D) <V5,’I71> <v5a"72> +

Y 87713‘ Ok

1 O Onik Onim

8 06, O¢, (Ve,my) 12 0¢, 9&m 08

(2.16)

Applying the gradient operator to the relations (2.14)182.and (2.16), taking into
account the equations (2.8), (2.9) and (2.10), we get theesgjons for the functions
11, Ny @andmn; written in terms ofpy, p2 andps. Inserting these relations into the
equations (2.8), (2.9) and (2.10) and integrating the tesuth respect t;, i =
1,2, 3 (again, we assume that the integration constants are zZeec=)d up with the
equations for the functions, ps andps:

Aepr +p1 =0, (2.17)

1 3/ 0% \°
Agpa +4pe = (7 - 5) Pi+ B (35221@) ; (2.18)
J

3(y-H(y-1 9y —5 1 ?pr \’
Aeps +9ps = — ( 231( 3)1)? + 72 P1ip2 — gP1 <—8§gék>
J

7 0%p1 9%*po 50p1 9*p P*p1

10€;06, 08,06, 8 OE; 0,0 DE;06,06m
13 9*p1 9*p1 O’py 50p1 Op1 0°py

8 06,06k 06x0Em 0EmOE; 8 OE; Oy OE; 06

+

(2.19)
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In dimensional form these equations look like:

Apr + K2p1 = 0, (2.20)
1 3 9°p1 \’
A, AZp — Y 290, 9 2.21
P2+ 4R7p2 <7 2>/{p1+2ﬁ2 Oz;0xy )’ 20
3(v-3)(v—3 9y =5 L9
Axps + I5%ps = Kp [— ( 24)1( 3)pf Tty g (8:1: -8;k
j

T Pp Ppp 13 Ppr Pp Py
4k? 0xj0xy, Oxj0zy,  8k* Ox 0z Ox) 0%y, 02,0

_ 5 0mop Fp 5 0p OPm O
8k? dxj Oxy, OxjOx),  8k* O 0x 0%y, 0T;0210Ty,

. (2.22)

We have to note that equations (2.20) and (2.21) were deniv§®] using the
assumption tha, andn, have potentials. In the present derivation this assumption
is relaxed and, as consequence, we were able to derive theotidier correction to
the homogeneous Helmholtz equation in terms of the pressheeequation (2.22)
is of Helmholtz type with non—homogeneous free term, whiepahds on the first
and second order solutions.

Completely in the same manner we can derive the equatiortkddunctionsy,
andgs (non—dimensional form):

2

1 5 1|0;
q2 = 1 1] 1 6_57 ) (2.23)
~292 4+ 975 s Y—5 _ 3 (32])1 )2
Acgs gz = ———1 2 + + 2, (e
€43 + 3 3 p1lp1] 2 PPt 1P Geag,
Ak Yy /41 FL3 0m O°p 10p O O
4 0&; 4 0808, 0808, 2 0E; O, OE;0,
_lomop 0%y 1 | Opy |, 0%y O%sy
8 0¢; 0, 06,06, ' 8" |og;06,| T~ 0&;06, o€, 06,
5 Ppi Pp Pp  19p, ;i >
8 008k 0E0Em 0605 4 08 0EOEm OE;08KOEm,
_1op 9°py 9°p1 1Op1 &p 9Py (2.24)

8 OE; DELOE,, D06, 4 DEj DELIE,, DEj0ELIE

Heress function is a potential of the functiofl,. We made this assumption in order
to simplify our derivation, and it has to be proved yetis an auxiliary quantity and
it is the solution of the Poisson equation, where the righichside depends on the
functionp; and its derivatives:

2

: (2.25)

2 1] 9%

4 ’353'&

7—1 o 1 Op1
A = — _ = —
£52 4 |p1| 4 (%j
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3. Boundary Conditions

In the previous section we derived the equations for unknfumotionsp;, p. and
ps3. In order to complete the model we have to prescribe bourmtargiitions, which
are completely consistent up to the orders of our approximatnd the geometry.
So far we mentioned, that the dom@nc R3 in Eulerian description changes its
shape. To keef fixed we introduced Lagrangian coordinates. The computatio
domain consists of two main parts: the first part is a basssipeaker with cylindrical
symmetry itself {2;) and the second part is an artificial regién,j, cf. Fig. 1.

e
r Q
1 < 1 loudspeaker

“

reflex tube

Figure 1.Computational domain.

Also, we distinguish three kinds of boundaries of the donfairboundaries
which are fixed {§), harmonically oscillating boundaries with amplituglet angu-
lar frequencyl (respectivelyin andw in dimensional variables){) and segments
of spheres of radiug, where sound is radiated through,j. Because our bass loud-
speaker has axial symmetry it is enough to conskiieboundaries. Also we restrict
ourselves to special case: circular boundaries.

3.1. Circular boundaries

In this subsection we consider the case of the circular batesl The reason is
simple: almost all parts of the boundaries(@fhave circular shape, i.e. they can
be represented as parts of a circle. A straight line coulcebeesented as a part of
the circle with infinite radius. From now on we will not make ifefence between
circles and straight lines.

Let us consider some part of the circle of some fixed radiasd denote this
part by I', cf. Fig. 2a. Let us denote the position of the center of this circleghy
Consider at some point ofi a small control volumé,. Now, we assume thaf
is periodically oscillating with frequency along vector, cf. Fig. 2o. During the
oscillations the center of the circle is also oscillatingfixed). So, we may express
the position of the center b§, + n, (), wheren,(7) is given and assumed to be
vR (e”). The control volume?,, due to oscillations of " and due to very small
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Figure 2. The behaviour of the circular boundary.

viscosity of the air, is moving along’ (control volume onl” sticks to it). This is

an assumption. So, we do not know, the position of this conotume, but we
know, that the distance between the center of the circle hadontrol volume is
always constant, see Figh.2Assume, that the control volume moves from pdid

the point¢ + n(, £). In that case the distance between the control volume and the
center of the circle is constant, i.e.:

€ +en(r.€) — & —emo(T)]* = o™ (3.1)

Simplifying this relation we get:

2
(n.1(7,) = o (7)) = L =0 32)

Inserting the expansion (2.6) into relation (3.2), coliegtcorresponding terms we
end up with the boundary conditions for the functiensn, andn :

<’I’L,’I’]1> = <’I’L,V>7 (3.3)
(n,my) = 4% (m —v)?, (3.4)
() = oo (= o). (3.5)

Remembering the expressionsgf, n, andn, written in terms of,, p2 andps we
end up with the boundary conditions for functigns p». andps listed in Tab. 1. The
radiation condition means that the sound waves behavetsesrd tvere point sources
in the aperture of frequency 1 fgr, frequency 2 fop, and frequency 3 fops. It

is commonly used in linear acoustics, but has to be justifiecerthoroughly fop,
andps yet.
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Table 1.Boundary conditions.

) I I
Op1 _ Op1 _ opr | o 1y
D1 %—0 %—@%W %—’_(Z—"_Qs )p1=0
Op2 _ Op2 _ Op2 | o 1y, _
P2 Ho-=A0) FE=Aw) S5 + (2i+0;")p2=0
Ops _ Ops _ Ops R N
p3 %73(0) %*B(V) %—F(Z%H—Qs )p.;—O

In Tab. 1 we use notation:
1 1
AWw) = (Vem =0 + 7 (. Ve () + Ve (Ver)?) )

! Sl () + o [s.2m O2
B(v) = <n 5 Ve (P1p2) — == Ve (p1) + 16 {83&3@ 9¢;

Pp> O Op (%)2_5% Py
060, 9¢;  0& \ 0¢; 9€; 908

5 32?1 Op1 321’1 Op1 Op1 331)1 }>

+ 2

DE;06; D€y, DE;06,  OE; DEy DE;0E1,08,
9 1 1
+ S_Q <V5P1 -V, Vgpz - ZVg (p%) — Zv5 ((Vgp1)2)> R

in non—dimensional form, and

1 2 1 1 2
3 (vxpl - KV) + ik <na Vx (p%) + ?vx ((prl) )> s

S
S
[

1 y+1 3 1 O%p1_ Op»
B = - Vx T o, VX Oz
(v) <n %V (p1p2) r Vi (p1) + 1653 {88@8@- Ox;

o 2 Op1_Op (Op\*_ om0
6,Tj 6,Tj (Q).I'j(r“)l'ipl

Bzvi(?:vj (r“)SCj (91'1
5 0%p1 Op O%p 1 Op1 Opr OPm ]>

K2 0x;0x; Oxy Ox;0x), K2 Oxj Oxy 00z 0
9 1o, 1 )
+ 3 <Vx]91 — KV, Vxp2 — va (pl) - @Vx ((vxpl) )>

in dimensional variables, wherds non—scaled radius.

We have specified the Neumann boundary conditions for fansf;, po and
p3 on the moving and non—moving boundaries. Not always thesditons are ho-
mogeneous. Especially, let us note, that the condition$erctirved non—-moving
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boundaries are non—homogeneous in general. In next seedamill show numeri-
cally that naive guess, that on the non—-moving boundarigmlgeneous Neumann
boundary conditions (isolation conditions) are right degiis wrong.

To complete this section we also present boundary condifienthe functions

s andgs written in non—dimensional form, cf. Tab. 2.

4.

Table 2. Boundary conditions.

) I I
082 _ 0s2 _ 0s2 1 _
S2 % 70(0) % 70(1/) %“'Qé S2 =0
Ogs _ 9 _ 998 L (i o) gy =
q3 %—D(O) 8n_D(V) an+(l+£)s )gs =0

Here we use notation
V) .= \V 1 %4
40 &P1 )

1— 1
D(V) = <n, T’ng (p1 |p1|2) + 5

3 I;m
16 0¢; 1671 0¢; 06,0¢, 16 06, 0€,08), 06,0,

10p1 9°py @Ppr 1 9pidp  Pp Op1 9%sy >

0*p, Op; 10p, 0%ps
008 085 8 0&; D&0¢;
3 9p, 9°p 1 apy 9*p1 9*pa

Vepi|® +

4.9¢), 9,06, 0E,0¢; 16 9E; 9€), 0&,06,06,  9€; D&;0¢;

1

1 1
+ % (2 (Vep1 — v, Vesa) + 1 (Vep1 — v, Vepo) — 3P |V5Pl|2

1 0p1 Op, 62171 )

8 985 Oy €08},

Numerical Results

For the simulation we used FEMLAB package, which uses thedstal numerical
methods based on the finite elements. In order to make outsesumparable with
physical experiments, we simulate the behaviour of the alteet Sound Pressure
Level (SPL [dB]). The formula is the following, cf. [5]:

T
% fp%ot(t’ iB) dt
SPL = 10logy, | ——5—— |, (4.1)
Py
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whereT' is certain time periody, the pressure field at rest apgdy is given by
Prot (t, ) = pocgR (upr ()™ + p?pa()e® + 1° (ps(x)e®™" + gs(x)e’™"))

wherey is undetermined quantity. Let us fipd,, and insert the resulting expression
into (4.1):

2 4
Poo

P (12 p1 + pPas? + ptlpa|® + p° |p3|2)> . (42
0

SPL = 101log,, <
In the last expression the only unknown quantity (SPL is some prescribed value).
In order to findu we consider the behaviour of the pressure componanis;, ps
andgs on the boundary’, cf. Fig. 1. Actually, we find the average valueggf p,
p3 andgs on13y,i.e.:

iy [ rlpil? dr 5 [ rlgs|*dr
2 = o5l o opoIm 03 (43)
¢ [ rdr ’ 3 J rdr ’ T '
T3] [T5]

and insert them into (4.2). Hengecan be determined. The results of the simulation
for SPL = 100 [dB] on thel; andw = 65 [Hz] are depicted in Fig. 3.

110 2
100 120
5 om0
s
- {so
. Pit- )
: Bk
%
i - s
&0
s0 110
40 105

a) b)

2 4
Figure 3. a) The behaviour ofl0log;, <%u2|p1|2) on the upper part (right color
Do
2 4
bar), 10 log,, </)20—pcfu4|p2|2) on the lower part (left color bar), b) the behaviour of
0
2 4
10log;, /;‘;%NS |p3|2> function (upper part) and the sum of third order derivativé®;
0
(lower part).

As we mentioned above we were using FEMLAB package for ouukition.
The boundaries of the computational dom@iwere constructed using standard tools
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of FEMLAB such like rectangles and arcs of circles. Hends,abvious that the cur-
vature of the boundar§{2 is not continuous. Analyzing the results of the simulation
we see that the third order derivatives of the functigris not bounded near to the
discontinuities of the curvature cf. Figb3lower part). This affects the behaviour

2 2 4
of the functionsl0log,, (p2 > 18|ps |2) and10 log;, (p2 1| g3 |2) It might be,

thatin order to get smooth thlrd order derivativeppfve need continuous curvature
of 9Q.

As we promised in the previous section we show, that the wiemmdary con-

ditions, namely homogeneoug% = 0,7 = 1,2,3, on the rigid walls bring

I
completely different results. The results of simulatiores presented in Fig. 4. That
means, that we always have to do proper analysis in ordert@rdme the right
boundary conditions. These conditions do not always vamsk,.

125

120
120

119
s s

- {100
- =

. - om0
; s

v
a)

2 4
Figure 4. a) Functions with wrong boundary condition) log,, (%pﬂpﬁ) on the
Do

b)

p24

22 w2 ) on the lower part (left color bar), b)

upper part (right color bar)l0log; <

2 4
the behaviour o0 log,, (%uﬁ |ps| ) function with wrong boundary conditions.
0

5. Conclusions

In our work we started to consider classical Euler equatitm®order to do lin-
earization of non—linear Euler equations asymptoticalyemawas applied. If a bass
loudspeaker is run at high amplitudes we have to take intowadoot only linear
part, but also second and even third order corrections. \kgedk in addition to
the results in [3], where the derivation of the second orderection to the classi-
cal Helmholtz equation was considered, the third orderemtion for the acoustical
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pressure function. This third order correction, as wellessecond order correction,
is of Helmholtz type with non—homogeneous free term. Thiera&pie, which is used
in [3], was not applicable to get third order correction {@.or (2.22)) because of
the non—existence of the potentialgpf function. We applied another method to de-
rive the appropriate equations, cf. subsection 2.3. At #meestime we showed, that
the assumption of an existence of the potentials of the fomsf), andn, might be
completely relaxed.

In order to complete the model rather simple concept of thentdary condi-
tions was applied, cf. [2], [4]. Because the computatiormahéin is axisymmetric
we reduced our problem to the 2D case, cf. Fig. 1. The bounida®D consists
of the straight lines and arcs of the circles. Because ofwigigaid our attention
to the circle—shaped boundaries. However, similar conogfite boundary condi-
tions could be applied for general boundaries, cf. [2]. Biesundary conditions are
of Neumann type and, in general, non—homogeneous on thiewiis. The naive
assumption of the homogeneous boundary conditions mightdempletely to the
different solution, cf. Fig. 3 — Fig. 4 and compare the result

To get the numerical solution we used the FEMLAB package. pgg@imated
the boundaries of our computational domain using straigbsland arcs. This leads
to the discontinuous curvature what affect the results eftttird order correction
functionsps andqs because of the non—boundedness of third order derivatives o
p1 function. This is only a hypothesis. In our future work we il to prove our
apprehensions.
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Helmbholco lygties treiosios eiés patikslinimas
J. Jegorovs, J. Mohring

Remiantis Oilerio lygtimis ir asimptotine analize gautaslidholco lygties tréiosios eies
patikslinimas. Akustiniam slgiui gauta Helmholco tipo lygtis bei jai iSvestos salydeateikti
skaitinio modeliavimo rezultatai.



