Complexity Estimates for Severely Ill-posed Problems under A Posteriori Selection of Regularization Parameter
Abstract
In the article the authors developed two efficient algorithms for solving severely ill-posed problems such as Fredholm’s integral equations. The standard Tikhonov method is applied as a regularization. To select a regularization parameter we employ two different a posteriori rules, namely, discrepancy and balancing principles. It is established that proposed strategies not only achieved optimal order of accuracy on the class of problems under consideration, but also they are economical in the sense of used discrete information.
Keywords:
severely ill-posed problem, complexity, Galerkin’s information, discrepancy principle, balancing principleHow to Cite
Share
License
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.