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Abstract. In the article the authors developed two efficient algorithms for solv-
ing severely ill-posed problems such as Fredholm’s integral equations. The standard
Tikhonov method is applied as a regularization. To select a regularization parameter
we employ two different a posteriori rules, namely, discrepancy and balancing prin-
ciples. It is established that proposed strategies not only achieved optimal order of
accuracy on the class of problems under consideration, but also they are economical
in the sense of used discrete information.
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1 Introduction. Problem setting

The present paper is dedicated to estimations of information complexity for
severely ill-posed problems such as Fredholm’s integral equations with smooth
kernels. In this paper the authors continue researches started in [25,26]. Here-
with, in the indicated papers the regularization parameter was selected de-
pending on a level of input data error as well as on a parameter describing
smoothness of desired solution. The essential disadvantage of such selection
is that the regularization parameter have to conform with exact value of the
mentioned smoothness. It is obvious that such approach is suitable only if we
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know smoothness of desired solution. But, usually, such information is either
not available or not accurate. Therefore, a posteriori rule of choosing the reg-
ularization parameter is necessary by practical experiment. Such rule does not
require any additional information about smoothness of the solution. One of
the most common a posteriori rules is the Morozov discrepancy principle, that
was applied at the first time to moderately ill-posed problems in [5,11,12]. For
severely ill-posed problems this principle, in particular, was employed in [21].
Another a posteriori rule is the balancing principle, which called also the Lep-
skii principle. This principle was applied at the first time by O.V. Lepskii to
statistical problems (see [6]). Further, for solving linear ill-posed problems this
principle was involved in [3,13,24], and for nonlinear problems it was considered
in [2]. Recall, the balancing principle consists in the selection of a regulariza-
tion parameter to balance two functions in the error estimate of the algorithm.
In the present paper for efficient solving severely ill-posed problems economical
projection methods are designed. The standard Tikhonov method is used as
regularazer. In Subsections 4.1–4.2 the discrepancy principle is applied as a
stoping rule, and in 4.3–4.4 we use the balancing principle. Herewith, it will be
established that proposed strategies not only achieve optimal order of accuracy
on the class of problems under consideration, but also they are economical in
the sense of used discrete information amount. Now, we give a rough statement
of the problem.

Let us consider Fredholm’s integral equation of the first kind

Ax(t) = f(t), t ∈ [0, 1] (1.1)

with Ax(t) =
∫ 1

0
a(t, τ)x(τ)dτ, acting continuously in L2 := L2(0; 1). Suppose

that Range(A) is not closed in L2 and f ∈ Range(A). We also assume that a
perturbation fδ ∈ L2 : ‖f − fδ‖ ≤ δ, δ > 0 is given instead of the right-hand
side f of the equation (1.1). Following [21], as a severely ill-posed problem we
will understand the equation (1.1) for which a kernel of A is much smoother
than the solution of (1.1). Namely, we will assume that exact solution satisfies
some logarithmic source condition, e.g.

Mp(A) := {u : u = ln−p(A∗A)−1v, ‖v‖ ≤ ρ}, (1.2)

where p, ρ are some positive parameters, and A∗ is the adjoint of A. The oper-
ator function ln−p(A∗A)−1 is well-defined by its spectral decomposition

ln−p(A∗A)−1v =

∞∑
k=1

ln−p(λk)−2(ϕk, v)ϕk, (1.3)

A∗A=
∑∞
k=1 λ

2
k(ϕk, ·)ϕk, A =

∑∞
k=1 λkϕk(·, ψk), A∗ =

∑∞
k=1 λkψk(ϕk, ·).

Here λk, k = 1, 2, . . . , are singular values of A. Note, that the exact infor-
mation about smoothness, namely, the parameter p, is usually not available by
practical experiment. For this reason the set

M(A) :=
⋃

p∈(0,p1]

Mp(A) (1.4)
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is considered in place of Mp(A). Here p1 < ∞ is an upper bound for possible
values of p. Within the framework of our researches we construct approxima-
tions to the exact solution x† (1.1), which has minimal norm in L2 and belongs
to the set M(A). From now on, we assume that the parameter p is unknown.

It is known, that at the first time severely ill-posed problems was considered
in [8]. Note in [29] it was established that an error of any approximation method
for (1.1) with solutions from (1.4) can’t be less than O(ln−p δ−1). Methods
guaranteeing this order of accuracy on the class of problems under consideration
are used to call order-optimal. Later on, research of severely ill-posed problems
was continued in the series of works, in particular, [4,7,21,24,29]. For severely
ill-posed problems error estimates of the Tikhonov method in finite-dimensional
subspaces are given in [21] with parameter choice by discrepancy principle, and
in [24] with parameter choice by the balancing principle.

Now, we introduce a class of equations under consideration and give a
statement of problem. Let {ei}∞i=1 be some orthonormal basis in L2. By
Pm we denote the orthogonal projection onto span{e1, e2, . . . , em} : Pmϕ(t) =∑m
i=1(ϕ, ei)ei(t). Consider the following class of operators (1.2):

Hrγ = {A : ‖A‖ ≤ γ0,
∞∑

n+m=1

â2n,m(n ·m)2r ≤ γ21}, r > 0, (1.5)

where ân,m =
∫ 1

0

∫ 1

0
en(t)a(t, τ)em(τ)dτdt, γ0 ≤ e−

1
2 , γ = (γ0; γ1), n = 1 if

n = 0 and n = n otherwise.
If the kernel a(t, τ) of A has mixed partial derivatives up to order r by both

variables and the inequalities∫ 1

0

∫ 1

0

[
∂i+ja(t; τ)

∂ti∂τ j

]2
dtdτ <∞

hold for all i, j = 0, 1, . . . , r, then it is known (see, e.g. [19]), that A ∈ Hrγ for
some γ = (γ0, γ1).

From now on, class of equations (1.1) with operators belonging to Hrγ (1.5)
and solutions from M(A) (1.4) will be denoted by (Hrγ ,M(A)). Within the
framework of the present paper we concentrate on the study of projection
methods for solving equations from (Hrγ ,M(A)).

Any projection scheme for discretization of equations (1.1) with the per-
turbed right-hand side fδ one can define by means of a finite set of inner
products

(Aej , ei), (i, j) ∈ Ω, (1.6)

(fδ, ek), k ∈ ω1, ω1 = {i : (i, j) ∈ Ω}, (1.7)

where Ω to be a bounded domain of the coordinate plane [1,∞)× [1,∞). The
inner products (1.6), (1.7) are used to call the Galerkin information about (1.1).
Here card(Ω) is the total number of the inner products (1.6). In particular,

if Ω = [1, n] × [1,m] then one deals with the standard Galerkin discretization
scheme, card(Ω) = nm. Researches for various classes of ill-posed problems

Math. Model. Anal., 22(3):283–299, 2017.
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related to such scheme of discretization were conducted in a number of works
among which we mention [9, 20].

Definition 1. A projection method of solving (1.1) is a mapping P = P(Ω) :
L2 → L2 that use Galerkin’s information (1.6), (1.7) about (1.1). The mapping
P(Ω) provides a correspondence between the right-hand side of the equation
being solved and an element P(AΩ)fδ, which is a polynomial by the basis
{ei}∞i=1 with harmonic numbers from ω2 := {j : (i, j) ∈ Ω}. This element is
taken as an approximate solution of (1.1).

In general, we do not require from the method P either linearity, stability or
continuity. Such a general approach is useful when we compare approximation
properties of various methods of solving (1.1).

The error of the method P(Ω) on the class of equations (Hrγ ,M(A)) is
defined as

eδ
(
Hrγ ,M(A),P(Ω)

)
= sup
A∈Hrγ

sup
x†∈M(A)

sup
fδ:‖f−fδ‖≤δ

‖x† − P(AΩ)fδ‖.

The minimal radius of the Galerkin information is given by

RN,δ
(
Hrγ ,M(A)

)
= inf
Ω: card(Ω)≤N

inf
P(Ω)

eδ
(
Hrγ ,M(A),P(Ω)

)
.

This value describes the minimal possible accuracy of projection methods, while
the Galerkin information amount is bounded. Note, that RN,δ is related with
information complexity of the corresponding problem. The information com-
plexity of a problem is defined as the least amount of discrete information
needed to find an approximate solution with a given precision; the algorithmic
complexity is defined as the minimal number of arithmetic operations that must
be performed to construct such solution. Thus, RN,δ characterizes information
complexity on the class of problems (Hrγ ,M(A)).

It should be noted that investigation of complexity for various kind of prob-
lems was started in [30,31]. In these works the fundamentals of general theory
of optimal algorithms were introduced. In recent years the interest to com-
plexity of ill-posed problems is increasing. In the work [20] first economical
projection methods for solving moderately ill-posed problems were designed.
The standard Galerkin method was applied as discretization scheme. The first
estimates of information and algorithmic complexity for moderately ill-posed
problems were obtained in [19,22,23]. The authors point to the fact that opti-
mal order of such values are achieved under a modified Galerkin scheme that is
called hyperbolic cross. The study of complexity for severely ill-posed problems
was started relatively recently. These researches are highlighted in the series
of works, we mention [9, 25, 26, 28]. Note, that [9] continues researches started
by [20]. Here the authors consider economical discretization under the standard
Galerkin scheme for problems with solutions satisfying a general source condi-
tion (which contains also severely ill-posed problems). In [25, 26] information
and algorithmic complexity estimates are obtained for severely ill-posed prob-
lems. It is established that optimal order of these values are achieved within
the framework of the projection method where the modified Galerkin scheme
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is applied as discretization. For a priori parameter choice the general regu-
larizator (the generate function satisfies the Bakushinskii conditions) is used.
In [28] for the stopping rule according with the balancing principle error esti-
mates and information complexity estimates are given within the framework of
the same projection method with the modified Galerkin scheme as discretiza-
tion. The latest result related to discussed problem is highlighted in [10]. Here,
the authors consider a class of ill-posed problems, which is given by one fixed
operator.

As we have mentioned above, the paper continues researches started in
[25,26,28]. In the present work economical projection methods with different a
posteriori rules of regularization parameter choice will be developed for solving
severely ill-posed problems.

2 Regularization and discretization methods

To guarantee stable approximations we apply the standard Tikhonov method.
In this method a regularized solution xα is defined as the solution of the vari-
ational problem

Iα(x) := ‖Ax− fδ‖2 + α‖x‖2 → min . (2.1)

For a numerical realization of the standard Tikhonov method it is necessary
to carry out all computations with finite amount of input data. For that reason
the variational problem (2.1) is replaced by

Iα,n(x) = ‖Anx− fδ‖2 + α‖x‖2 → min,

where An is an operator of the finite rank.
To economical discretization of equations belonging to

(
Hrγ ,M(A)

)
we em-

ploy a modification of the standard Galerkin scheme which is called a hyperbolic
cross. It should be noted that the hyperbolic cross was applied at the first time
by K.I. Babenko [1] to compute the Kolmogorov widths on some classes of
periodic functions that have dominant mixed partial derivatives.

The idea of applying the hyperbolic cross to operator equations of the second
kind belongs to S.V. Pereverzev, and he implemented it in the series of works
(see e.g. [14, 15, 16, 18]). The efficiency of the hyperbolic cross for ill-posed
problems has been demonstrated in [17,19,26,27].

In our research we apply a projection scheme with Ω = Γn, where

Γn = {1} × [1; 22n]

2n⋃
k=1

(2k−1; 2k]× [1; 22n−k] ⊂ [1; 22n]× [1; 22n] (2.2)

is a hyperbolic cross on the coordinate plane by the basis {ei}∞i=1 involved in
the definition of the class Hrγ . One can find an approximate solution from an
operator equation of the second kind

αx+A∗nAnx = A∗nfδ.

Math. Model. Anal., 22(3):283–299, 2017.
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Thus we seek an approximation x = xδα,n as

xδα,n = gα(A∗nAn)A∗nfδ, (2.3)

where gα(λ) = (α+ λ)−1, and

An = P1AP22n +

2n∑
k=1

(P2k − P2k−1)AP22n−k . (2.4)

Moreover, we introduce following auxiliary elements

xα = gα(A∗A)A∗f, xα,n = gα(A∗nAn)A∗nf. (2.5)

3 Auxiliary results

The Section contains some definitions, facts, and also the series of auxiliary
assertions which are needed later.

It is well-known (see e.g. [32]) that for any linear bounded operator A the
following inequalities hold:

‖(αI +A∗A)−1‖ ≤ α−1, ‖(αI +A∗A)−1A∗‖ ≤ 1

2
√
α
,

‖A(αI +A∗A)−1A∗‖ ≤ 1. (3.1)

Lemma 1. ( [32, p. 34]) If g is a bounded Borel measurable function on [0, γ20 ],
A ∈ L(L2, L2), ‖A‖ ≤ γ0, then

A∗g(AA∗) = g(A∗A)A∗, Ag(A∗A) = g(AA∗)A. (3.2)

Lemma 2. (see [21]) Let x† ∈ Mp(A) and ‖A‖ ≤ γ0 ≤ e−1/2. Then for suffi-
ciently small α ∈ (0, e−2p) it holds

‖Axα − f‖ ≤ γ−10 ρ
√
α ln−p 1/α,

where xα is determined by (2.5).

Lemma 3. ( [21]) Let x† ∈Mp(A), ‖A‖ ≤ γ0 ≤ e−1/2, and α is such that

‖Axα − f‖ ≤ d
′
δ,

where d
′
> 0 is some positive constant and xα is determined by (2.5). Then

the estimate
‖x† − xα‖ ≤ ξ1 ln−p 1/δ

is fulfilled. The constant ξ1 > 0 depends only on d
′
, ρ and p.

Lemma 4. Let x† ∈M(A). For any α > 0 and n ∈ N the estimate

‖Axα − f‖ ≤ ‖Anxδα,n − P22nfδ‖+
(
‖(I − P22n)f‖2 + δ2

)1/2
+

5

4
ρ‖A−An‖

holds, where xα, x
δ
α,n are determined by (2.5),(2.3), correspondingly.
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Proof. First, we note that

‖x†‖ = ‖ln−p(A∗A)v‖ ≤ ρ sup
0<λ≤γ2

0

| ln−p 1/λ| ≤ ρ. (3.3)

Further, let’s consider the decomposition

Axα − f = Anx
δ
α,n − P22nfδ + S1 + S2,

where

S1 := − (I −Angα(A∗nAn)A∗n) (f − P22nfδ) ,

S2 := (Agα(A∗A)A∗ −Ang(A∗nAn)A∗n) f.

Now we estimate S1, S2. By relations (3.1), (3.2) we immediate find

‖S1‖ ≤ ‖
(
I −An(αI +A∗nAn)−1A∗n

)
‖‖f − P22nfδ‖

≤ ‖
(
I − (αI +AnA

∗
n)−1AnA

∗
n

)
‖‖(I − P22n)f + P22n(f − fδ)‖

≤
(
‖(I − P22n) f‖2 + δ2

) 1
2 .

It remains to estimate the norm of S2. Rewrite S2 as follows

S2 = (Agα(A∗A)A∗ −Angα(A∗nAn)A∗n) f

= α (αI +AnA
∗
n)
−1

(AA∗ −AnA∗n) (αI +AA∗)
−1
f = s1 + s2,

where

s1 := α (αI +AnA
∗
n)
−1

(A−An)A∗ (αI +AA∗)
−1
Ax†,

s2 := α (αI +AnA
∗
n)
−1
An (A∗ −A∗n) (αI +AA∗)

−1
Ax†.

Further, we bound norms of s1 and s2. By (3.1), (3.2) and (3.3), we obtain

‖s1‖ ≤ α‖(αI +AnA
∗
n)
−1‖‖A−An‖‖(αI +A∗A)

−1
A∗A‖‖x†‖ ≤ ρ‖A−An‖,

‖s2‖ ≤ α‖(αI +AnA
∗
n)
−1
An‖‖A∗ −A∗n‖‖(αI +AA∗)

−1
A‖‖x†‖

≤ ρ

4
‖A−An‖.

Thus,

‖S2‖ ≤ ‖s1‖+ ‖s2‖ ≤
5ρ

4
‖A−An‖.

Summing up the above bounds, we finally get

‖Axα − f‖ ≤ ‖Anxδα,n − P22nfδ‖+
(
‖(I − P22n)f‖2 + δ2

)1/2
+

5ρ

4
‖A−An‖.

The lemma is proved. ut

Math. Model. Anal., 22(3):283–299, 2017.
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Lemma 5. ( [4, 24]) Let x† ∈M(A). Then for any α > 0 the inequality

‖x† − xα‖ ≤ ξ2ρ ln−p /α

holds, where

ξ2 =

{
1, 0 < p ≤ 1,

e (p/e)
p
, p ≥ 1

(3.4)

and xα is determined by (2.5).

Lemma 6. Let x† ∈M(A). Then for any α > 0 and n ∈ N the inequality

‖xα − xα,n‖ ≤
3

2
√
α
‖A−An‖

holds, where xα and xα,n are determined by (2.5).

Proof. First, rewrite

xα − xα,n = (αI +A∗A)−1A∗Ax† − (αI +A∗nAn)−1A∗nAx
†

= T1x
† + T2x

†,

where

T1 := (αI +A∗A)−1A∗A− (αI +A∗nAn)−1A∗nAn,

T2 := (αI +A∗nAn)−1A∗n(An −A).

By (3.1) we have ‖T2‖ ≤ 1
2
√
α
‖An −A‖.

It remains to estimate ‖T1‖. By means of (3.2) we rewrite T1 as

T1 = α (αI +A∗A)
−1

(A∗A−A∗nAn) (αI +A∗nAn)
−1

= T 1 + T 2,

where

T 1 := α (αI +A∗A)
−1
A∗ (A−An) (αI +A∗nAn)

−1
,

T 2 := α (αI +A∗A)
−1

(A∗ −A∗n)An (αI +A∗nAn)
−1
.

Further we bound the norms of T 1 and T 2. By (3.1) we obtain

‖T 1‖ ≤
1

2
√
α
‖A−An‖.

It remains to estimate T 2. By (3.2) we have

T 2 = α (αI +A∗A)
−1

(A∗ −A∗n) (αI +AnA
∗
n)
−1
An

and applying (3.1) we get ‖T 2‖ ≤ 1
2
√
α
‖A−An‖. Hence,

‖T1‖ ≤ ‖T 1‖+ ‖T 2‖ ≤
1√
α
‖A−An‖.

Thus, ‖xα − xα,n‖ ≤ 3ρ
2
√
α
‖A−An‖. The lemma is proved. ut
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Lemma 7. The following two-side estimate holds:

22nn < card(Γn) ≤ 2 · 22nn.

Proof. By means of (2.2) it holds card(Γn) =
∑n
k=0 card(Qk), with

Qk =

{
(2k−1; 2k]× [1; 22n−k], k = 1, 2, . . . n

{1} × [1; 22n], k = 0
.

Hence,

card(Γn) = 22n +
1

2

2n∑
k=1

2k22n−k

= 22n +
1

2

2n∑
k=1

22n = 22n (1 + n) = 22nn
(

1 +
1

n

)
.

Clearly, 22nn < card(Γn) ≤ 2 · 22nn. The lemma is proved. ut

It is known (see., e.g. [22]), that for any A ∈ Hrγ the inequality

‖A−An‖ ≤ c
√
n2−2rn (3.5)

is fulfilled, where An is determined by (2.4), and c = γ12r+1/2.

4 Error estimates

In this section two approaches for solving severely ill-posed problems from
(Hrγ ,M(A)) are proposed. These methods consist in combination of the stan-
dard Tikhonov regularization with discrepancy principle (Algorithm I) and
balancing principle (Algorithm II). The difference between these principles is
in the follows: the changes of values for parameter α correspond to the opposite
directions, namely, α is decreasing for discrepancy principle, and α is increasing
for balancing principle.

4.1 Algorithm I (Discrepancy principle as a stopping rule)

Let the regularization parameter α be selected as

α ∈ ∆θ(δ) = {α : α = αm := α0θ
m, m = 0, 1, 2, . . . ,

α ∈ (δ2, α0], θ ∈ (0, 1), α0 ∈ (0, 1]} (4.1)

and the discretization parameter n is selected as follows

c
√
n2−2rn = 4δ/(5ρ). (4.2)

The equality means that as parameter n we take the rounded up number to
solution of (4.2). Further, we describe proposed algorithm with the discrepancy
principle as a stopping rule concerning to the studied problem.

Math. Model. Anal., 22(3):283–299, 2017.
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Algorithm 1.
1. Input data: A ∈ Hrγ , fδ, δ, ρ;
2. To construct An (2.4) and P22nfδ we compute the inner products (1.6),

(1.7);
3. The cycle: m = 1, 2, . . . ,M , α = αm = α0θ

m, xδαm,n (2.3) is computed
by solving the equation

αmx
δ
αm,n +A∗nAnx

δ
αm,n = A∗nfδ.

The cycle is running as long as stopping rule conditions (4.3),(4.4) will be met;
4. A stopping rule (the discrepancy principle)

‖AnxδαM ,n − P22nfδ‖ ≤ dδ, (4.3)

‖Anxδαm,n − P22nfδ‖ > dδ, (4.4)

where m < M, d >
√

2 + 1, and xδαM ,n is determined by (2.3).

Introduced projection method (2.4),(4.1)–(4.4) is denoted as P ′1.

Lemma 8. Let x† ∈ M(A), A ∈ Hrγ , αM meets (4.3), (4.4) is satisfied with

d >
√

2 + 1, and the parameter n in (2.4) is chosen as (4.2). Then there are
the constants d1, d2 > 0, such that the two-side estimate

d1δ ≤ ‖AxαM − f‖ ≤ d2δ

is fulfilled.

Proof. First, note that by (3.5) and (4.2) it holds

5ρ

4
‖A−An‖ ≤ δ, ‖(I − P22n)f‖ ≤ δ.

If αM meets the condition (4.3) then

‖AngαM (A∗nAn)A∗nfδ − P22nfδ‖ ≤ dδ

and applying Lemma 4 we obtain

‖AxαM − f‖ ≤ dδ +
√

2δ2 + δ = (d+
√

2 + 1)δ.

At the same time, keeping in mind (4.4), for α = αM−1 we have

‖AngαM−1
(A∗nAn)A∗nfδ − P22nfδ‖ > dδ. (4.5)

Using the inverse triangle rule we can find

‖AxαM−1
− f‖ ≥ ‖AngαM−1

(A∗nAn)A∗nfδ − P22nfδ‖ − (
√

2 + 1)δ. (4.6)

By spectral decomposition of the operator A (see (1.3)) we get

‖AxαM − f‖2 =

∞∑
k=1

λ2k ln−2p λ−2k (v, ψk)2
[

λ2k
αM + λ2k

− 1

]2
> θ2α2

M−1

∞∑
k=1

λ2k

(αM−1 + λ2k)
2 ln−2p λ−2k (v, ψk)2.
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Hence,
‖AxαM − f‖2 > θ2‖AxαM−1

− f‖2. (4.7)

Substituting (4.5) and (4.6) in (4.7) we finally obtain

‖AxαM − f‖ ≥ θ(d−
√

2− 1)δ.

Thus, the lemma is proved with d1 = θ(d−
√

2− 1)δ, d2 = θ(d+
√

2 + 1)δ. ut

4.2 Error estimate of the algorithm I

Theorem 1. Let x† ∈ M(A), A ∈ Hrγ , the parameters of regularization αM
and discretization n are chosen as (4.3) and (4.2), correspondingly. Then the
estimate

‖x† − xδαM ,n‖ ≤ c̃ ln−p 1/δ (4.8)

holds, where the constant c̃ > 0 only depends on γ0, r, d1, d2, ρ and p; xδαM ,n is
determined by (2.3).

Proof. It is obvious that

‖x† − xδαM ,n‖ ≤ ‖x
† − xαM ‖+ ‖xαM − xαM ,n‖+ ‖xαM ,n − xδαM ,n‖.

Applying (3.1) the last term can be estimated as

‖xαM ,n − xδαM ,n‖ = ‖(αMI +A∗nAn)−1A∗n(f − fδ)‖ ≤
δ

2
√
αM

. (4.9)

By Lemmas 3, 6 and relations (4.2), (4.9) we obtain

‖x† − xδαM ,n‖ ≤ ξ1 ln−p 1/δ +
6

5

δ
√
αM

+
1

2

δ
√
αM
≤ ξ1 ln−p 1/δ +

17

10

δ
√
αM

.

Further, if for αM selected from (4.3) it holds αM ≥ δ then for sufficiently
small δ we have

‖x† − xδαM ,n‖ ≤ ξ1 ln−p 1/δ +
17

10

√
δ ≤ c̃1 ln−p 1/δ,

where c̃1 = ξ1 + 17
10 .

Otherwise, if αM ≤ δ then by Lemmas 2 and 8 we get

d1δ ≤ ‖AxαM − f‖ ≤ γ−10 ρ
√
αM ln−p 1/αM ≤ γ−10 ρ

√
αM ln−p 1/δ.

Hence, δ√
αM
≤ γ−1

0 ρ
d1

ln−p 1/δ. Thus,

‖x† − xδαM ,n‖ ≤ ξ1 ln−p 1/δ +
17

10

γ−10 ρ

d1
ln−p 1/δ = c̃2 ln−p 1/δ,

where c̃2 = ξ1 + 17
10
γ−1
0 ρ
d1

. The theorem is proved with c̃ = max{c̃1, c̃2}. ut
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4.3 Algorithm II (Stopping rule according to balancing principle)

Let the discretization parameter n be selected, as before, according with (4.2):

c
√
n2−2rn = 4δ/(5ρ). (4.10)

First, we formulate the result giving an error estimate of the method with
the balancing principle as a stop rule. This bound depends only on input data
error δ and the regularization parameter α.

Theorem 2. Let x† ∈M(A), A ∈ Hrγ . Then the estimate

‖x† − xδα,n‖ ≤ ξ2ρ ln−p
1

α
+

17

10

δ√
α

(4.11)

holds, where xδα,n is determined by (2.3), and ξ2 is determined by (3.4).

Proof. By triangle rule we get

‖x† − xδαn‖ ≤ ‖x
† − xα‖+ ‖xα − xα,n‖+ ‖xα,n − xδα,n‖.

By Lemmas 5,6 and relations (4.9), (4.10) we obtain

‖x† − xδαn‖ ≤ ξ2ρ ln−p
1

α
+

6

5

δ√
α

+
δ

2
√
α

= ξ2ρ ln−p
1

α
+

17

10

δ√
α
.

The theorem is proved. ut

For our further manipulations we denote as Ψ1(α) = ξ2ρ ln−p 1
α and Ψ2(α) =

17
10

δ√
α
. Thus the error estimate (4.11) can be rewritten as follows

‖x† − xnα,δ‖ ≤ Ψ1(α) + Ψ2(α),

where Ψ1(α) and Ψ2(α) for α→∞ are monotonically increasing and decreasing
convex functions, respectively. Let us fix some real number q > 1 and define
by DM the set of possible values for the parameter α:

DM = {αi = α0(q2)i, i = 1, 2, ...,M},

where α0 =
(
17
10

)2
δ2, M =

[
logα−10 /(2 log q)

]
.

For solving equation (1.1) we propose a numerical algorithm that is distin-
guished from algorithm I by applying the balancing principle as the stopping
rule [13].

Algorithm 2.
1. Given data: A ∈ Hr

γ , δ, fδ, ρ;

2. Compute the Galerkin information:

(fδ, ek), k ∈ (1, 22n], (Aej , ei), (i, j) ∈ Γn;

3. Compute the set of elements xδαi,n:
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for i = 1 to M solve the equations

αix
δ
αi,n +A∗nAnx

δ
αi,n = A∗nfδ

end;

4. Design the set of possible indexes:

D+
n = {i : ‖xδαi,n − x

δ
αj ,n‖ ≤ 4Ψ2(αj), ∀i > j, i = 1, . . . ,M}; (4.12)

5. Choose αi according to the rule i+ = max{i : i ∈ D+
n };

6. xδαi+ ,n
is an approximate solution.

Let’s denote numerical method (2.4),(4.10)–(4.12) by P ′2. The optimality
of the projection method P ′2 is established in the next subsection.

4.4 Error estimate for Algorithm II

For further mathematical manipulations we introduce the auxiliary values

α∗ := max{αi ∈ DM : Ψ1(αi) ≤ Ψ2(αi)}, α̂ = {αi ∈ R : Ψ1(αi) = Ψ2(αi)}.

Theorem 3. Let A ∈ Hrγ and x† ∈ M(A). Then for the projection method P ′2
the following error bound

‖x† − xδαi+ ,n‖ ≤ 6qΨ1(α̂)

takes place.

Proof. The proof is analogous to the proof of Theorem 4.1 [28]. 2

Theorem 4. Let A ∈ Hrγ and x† ∈M(A). Then error bound for the projection
method P ′2 is the following

‖x† − xδαi+ ,n‖ ≤ 6qκp ln−p δ−1,

where κp is some constant that does not depend on δ.

Proof. The proof of the Theorem is analogous to the proof of Theorem 4.2 [28].
2

5 Minimal radius of Galerkin’s information

Now, we will obtain an error estimate for the methods P ′i , i = 1, 2. This
estimate will be an upper bound for RN,δ. Note that the proof of this theorem
is cloth to that of Theorem 5.1 from [28], but for completeness and wholeness
of the paper we keep the proof of this theorem.

Theorem 5. For sufficiently small δ the estimate

RN,δ
(
Hrγ ,M(A)

)
≤ eδ

(
Hrγ ,M(A),P

′

i

)
≤ ci,p ln−pN2r, i = 1, 2,

is fulfilled, where the constants ci,p > 0, i = 1, 2, do not depend on δ. More-
over,

card(Γn) � δ− 1
r ln1+ 1

2r δ−1.
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Proof. We establish an upper bound for RN,δ. First, let’s consider the algo-

rithm P ′1 (2.4), (4.1)–(4.4). We express the right-hand side of (4.8) by N, where
N = c′n22n, 1 < c′ ≤ 2 (see Lemma 7). Due to (4.2) we have

δ−1 =
4

5ρc
n−1/222rn =

4(c′)−r

5ρc
Nrn−

1
2−r.

By obvious transformations we obtain lnN = ln c′ + 2n ln 2 + lnn. Hence,
n ≤ lnN/2 ln 2, and δ−1 we estimate as follows

δ−1 ≥ 4(c′)−r(2 ln 2)1/2+r

5ρc
Nr(lnN)−1/2−r.

For any µ > 0 there is some N0 that for all N ≥ N0 it holds lnN ≤ Nµ.
Consequently,

δ−1 ≥ 4(c′)−r(2 ln 2)1/2+r

5ρc
NrNµ(−1/2−r) =

4(c′)−r(2 ln 2)1/2+r

5ρc
N (1−µ)r− 1

2µ.

Without loss of generality we assume µ such that r(1−µ)− 1
2µ > 0. Then (4.8)

we rewrite as

‖x† − xδαM ,n‖ ≤ c1,p ln−pN2r.

By definition of RN,δ
(
Hrγ ,M(A)

)
it follows

RN,δ
(
Hrγ ,M(A)

)
≤ ‖x† − xδαM ,n‖ ≤ c1,p ln−pN2r.

Further, we consider the algorithm P ′2 (2.4),(4.10)–(4.12). It is easy to establish
that the estimate

RN,δ
(
Hrγ ,M(A)

)
≤ ‖x† − xδα+,n‖ ≤ c2,p ln−pN2r

is fulfilled.
It remains to establish

N := card(Γn) � n22n = (
√
n2−2rn)−

1
r n

1
2r n � δ− 1

r ln1+ 1
2r δ−1.

The theorem is completely proved. ut

Below we formulate a result giving the order estimate of the minimal radius
for the Galerkin information.

Theorem 6. The two-side estimate

RN,δ
(
Hrγ ,M(A)

)
� ln−pN2r

holds, where N � δ− 1
r ln1+ 1

2r δ−1. The indicate optimal order is achieved within
the framework of the algorithms P ′i , i = 1, 2.
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The lower bound for RN,δ was established in [28], and the upper estimate
is obtained in Theorem 5.

Remark 1. Comparing results for the strategy from [9], where the standard
Galerkin method was applied as discretization scheme, with that of Theorem 6,
we can conclude that all these approaches achieve the optimal order of accuracy
on the class of severely ill-posed problems under study. In the same time
the modification for the Galerkin scheme (2.2) allows to reduce essentially the
amount of discrete information.

Moreover, if we compare obtained results with that of [25, 26], where the
regularization parameter was selected a priori, first we note that in the present
paper we consider a more wide class of equations (compare (1.4) and (1.2)). On
the one hand, the problem becomes more complicate (we reject from knowing
the exact value of p); on the other hand, the aim of our research is the same,
namely, we have to provide the optimal order of accuracy with minimal cost of
used Galerkin’s information. If we compare discrete information amount then
we faced with the fact that it is larger (on logarithmic factor) in the case of
unknown parameter p. The increasing of discrete information amount one can
consider as a “penalty” for rejection to know a smoothness of desired solution.
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