Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems
Abstract
In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.
Keywords:
reproducing kernel method, convergence analysis, boundary value problemHow to Cite
Share
License
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.