Convergence of the Solutions on the Generalized Korteweg–de Vries Equation∗
Abstract
We consider the generalized Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting.
Keywords:
singular limit, compensated compactness, connected compactness, Korteweg-de Vries equationHow to Cite
Share
License
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.