Cardinal approximation of functions by splines on an interval
Abstract
The cardinal interpolant of functions on the real line by splines is determined by certain formula free of solving large or infinite systems. We apply this formula to functions given on the interval [0,1] introducing special extensions of functions from [0,1] into the real line which maintains the optimal error estimates. The computation of the parameters determining the interpolant costs O (n log n) operations.
First published online: 14 Oct 2010
Keywords:
splines, interpolation, error estimates, best constantsHow to Cite
Share
License
Copyright (c) 2009 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2009 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.