
Mathematical Modelling and Analysis ISSN 1392-6292 print

Volume 14 Number 1, 2009, pages 127–138 ISSN 1648-3510 online

Doi:10.3846/1392-6292.2009.14.127-138 www.vgtu.lt/mma/

c©Vilnius Gediminas Technical University, 2009

Cardinal Approximation of Functions by Splines

on an Interval∗

G. Vainikko

Institute of Mathematics, University of Tartu

J. Liivi 2, 50409 Tartu, Estonia

E-mail: gennadi.vainikko@ut.ee

Received October 19, 2008; published online February 25, 2009

Abstract. The cardinal interpolant of functions on the real line by splines is de-
termined by certain formula free of solving large or infinite systems. We apply this
formula to functions given on the interval [0, 1] introducing special extensions of func-
tions from [0, 1] into the real line which maintains the optimal error estimates. The
computation of the parameters determining the interpolant costs O(n log n) opera-
tions.
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1 Introduction

Cardinal interpolation of functions on the real line by B-splines has good (in
some sense best possible) approximation properties, and the parameters of
the interpolant are determined by certain formulae free of solving large or
infinite systems (see Section 2.2). In the present paper we apply this formula to
functions determined on an interval, say [0, 1], introducing special extensions of
functions given on [0, 1] onto the real line maintaining the error estimates. The
computation of the parameters determining the interpolant costs O(n log n)
operations. This is somewhat more expensive than the interpolation through
introducing suitable boundary conditions for the spline interpolant at points 0
and 1 and solving the corresponding band system that costs O(n) operations.
On the other hand, the accuracy of the approximation and the computations
are under a good control, and we are free of the care about the numerical
stability of solving large systems.

In Sections 2 we recall some results about the cardinal interpolation of
functions by smooth splines on the real line. In Section 3 we define sufficiently
smooth extensions of functions f given on [0, 1] onto the real line that maintain
the error estimates of the cardinal spline interpolation. The starting idea is to
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continue f with the help of the Taylor expansions at 0 and 1. Damping the
Taylor polynomials we get more convenient schemes for the practice. Approxi-
mating the derivatives in the Taylor coefficients by suitable finite differences we
obtain an interpolation projection of f ∈ C[0, 1] which asymptotically main-
tains the optimal accuracy of the basic cardinal interpolation on the real line.
In Section 4 we call attention to another idea, when we decompose f into a
periodic part and a polynomial.

2 Preliminaries

2.1 The father B-spline

For m ∈ N, the father B-spline Bm of order m [1, 6] (or of degree (m − 1), as
defined in [2, 7, 13]) can be defined by the formula

Bm(x) =
1

(m − 1)!

m∑

i=0

(−1)i

(
m

i

)
(x − i)m−1

+ , x ∈ R,

where, as usual, 0! = 1, 00 := limx↓0 xx = 1,

(
m
i

)
=

m!

i! (m − i)!
, (x − i)m−1

+ :=

{
(x − i)m−1, x − i ≥ 0

0, x − i < 0

}
.

Most important properties of Bm are as follows:

Bm |[i,i+1] ∈ Pm−1, i ∈ Z, Bm ∈ Cm−2(R),

suppBm = [0, m], Bm(x) > 0 for 0 < x < m,
∑

j∈Z

Bm(x − j) = 1, x ∈ R,

where Pm−1 is the space of polynomials of degree ≤ m − 1.

2.2 Cardinal interpolation by splines on the real line

Let us introduce the following spaces of functions defined on the real line R =
(−∞,∞):

• BC(R) is the Banach space of bounded continuous functions equipped
with the norm

‖f‖∞ = ‖f‖∞,R = sup
x∈R

|f(x)|;

• Wm,∞(R) is the Sobolev space of functions having bounded derivatives up
to order m (the derivatives are understood in the sense of distributions);

• V m,∞(R) is the space of functions with bounded mth derivative; clearly,
Wm,∞(R) + Pm ⊂ V m,∞(R) (this inclusion is strict);
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• V m,∞
h (R) is the space of functions f ∈ Cm−2(R) such that

f (m−1) |(ih,(i+1)h)∈ C((ih, (i + 1)h)),

f (m) |(ih,(i+1)h)∈ L∞((ih, (i + 1)h)) for all i ∈ Z,

σh,m(f) = σh,m,∞(f) := sup
i∈Z

sup
ih<x<(i+1)h

| f (m)(x) |< ∞;

clearly, V m,∞(R) ⊂ V m,∞
h (R) and ‖f (m)‖∞ = σh,m(f) for f ∈ V m,∞(R);

• Sh,m(R) ⊂ V m,∞
h (R) is the space of cardinal splines of order m (or of

degree m− 1) with the knot set hZ = {ih : i ∈ Z} of the step size h > 0;
thus fh ∈ Sh,m(R) means that fh ∈ Cm−2(R) and its restriction to any
interval (ih, (i + 1)h), i ∈ Z, belongs to Pm−1.

It is known [3, 4, 5] that for f ∈ BC(R), there exists a unique bounded
spline Qh,mf ∈ Sh,m(R) (the interpolant of f) such that

(Qh,mf)
(
(k +

m

2
)h

)
= f

(
(k +

m

2
)h

)
, k ∈ Z; (2.1)

if f ∈ C(R) is polynomially growing as x → ∞ or x → −∞, the interpolant
Qh,mf ∈ Sh,m(R) still exists and is unique in the space of polynomially grow-
ing functions. Cases m = 1 and m = 2 are trivial in the sense that the spline
interpolant can be constructed on every subinterval [ih, (i + 1)h], i ∈ Z, inde-
pendently of other other subintervals. For m ≥ 3, Qh,mf can be represented
in the form [7]

(Qh,mf)(x) =
∑

k∈Z

dkBm(h−1x − k), x ∈ R,

dk =
∑

j∈Z

αk−j,mf((j +
m

2
)h), k ∈ Z, (2.2)

where Bm is the father B-spline introduced in Section 2.1,

αk,m =

m0∑

l=1

zm0−1
l,m

P ′
m(zl,m)

z
|k|
l,m, k ∈ Z, m0 =

{
(m − 2)/2, m even,

(m − 1)/2, m odd;
(2.3)

zl,m ∈ (−1, 0), l = 1, ..., m0, are the roots of the characteristic polynomial
Pm(z) =

∑
|k|≤m0

Bm(k + m
2 )zk+m0 (they are simple and 1/zl,m ∈ (−∞,−1),

l = 1, ..., m0, are the remaining m0 roots of Pm ∈ P2m0
). Clearly,

| αk,m |≤ cmθk
m, θm = max

1≤l≤m
| zl,m |< 1.

For h = 1/n, n ∈ N, the complexity of (Qh,mf)(x) for x restricted to
[0, 1] is O(n log n) arithmetical operations: first, due to the support properties
of Bm, the formula for (Qh,mf)(x) in (2.2) reduces for x ∈ [ih, (i + 1)h) to

(Qh,mf)(x) =
∑i

k=i−m+1 dkBm(h−1x − k), thus we have to determine n +
2m parameters dk; second, since αk,m decays exponentially, one dk can be
computed by (2.2), (2.3) with a given accuracy O(hr), r > 0, in O(log n)
arithmetical operations.

Math. Model. Anal., 14(1):127–138, 2009.
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Theorem 1. For f ∈ V m,∞
h (R), the error f − Qh,mf is bounded in R and

‖f − Qh,mf‖∞ ≤ Φm+1π
−mhmσh,m(f) (2.4)

where Φm =
4

π

∑∞
k=0

(−1)km

(2k + 1)m
is the Favard constant.

In particular,

Φ1 = 1, Φ2 = π/2, Φ3 = π2/8, Φ4 = π3/24, Φ5 = 5π4/384,

and it holds

Φ1 < Φ3 < Φ5 < ... <
4

π
< ... < Φ6 < Φ4 < Φ2, lim

m→∞
Φm =

4

π
.

The proof of Theorem 1 can be found in [2] for 1-periodic functions f
and in [9] or [10] for the general formulation. In the periodic case with h =
1/n, even n, the estimate (2.4) realizes the best possible approximation of the
periodic Sobolev class Wm,∞(R) in the sense of the Kolmogorov n−width,
see [2]. Further, in the general (nonperiodic) formulation, estimate (2.4) is
the best possible in the sense of the worst case for the classes V m,∞

h (R) and
Wm,∞(R) over all approximation methods using the same information as the
cardinal spline interpolant – the values of f at the points (k + m

2 )h), k ∈ Z,
see [9, 10, 12] for a more detailed formulation and a proof. In particular, the
constant in (2.4) is exact (cannot be improved for the classes V m,∞

h (R) and
Wm,∞(R)).

3 Taylor and Damped Taylor Extension of Functions from

[0, 1] to R

Now we assume that h = 1/n and f ∈ V m,∞
h [0, 1], i.e., f ∈ Cm−2[0, 1],

f (m−1) |(ih,(i+1)h)∈ C((ih, (i + 1)h)), f (m) |(ih,(i+1)h)∈ L∞((ih, (i + 1)h)),

i = 0, . . . , n − 1,

σh,m,[0,1](f) := sup
0≤i≤n−1

sup
ih<x<(i+1)h

| f (m)(x) |< ∞.

Extending f up to a function f ∈ V m,∞
h (R) defined on R such that

σh,m,R(f) = σh,m,[0,1](f), (3.1)

we obtain by Theorem 1 for the spline approximation fh,m := (Qh,mf)|[0,1] the
error estimate

‖f − fh,m‖∞,[0,1] := sup
0≤x≤1

|f(x) − fh,m(x)| ≤ Φm+1π
−mhmσh,m,[0,1](f), (3.2)

that is our final goal. Thus the problem reduces to the construction of an
extension of a given function f ∈ V m,∞

h [0, 1] up to a function f ∈ V m,∞
h (R)

such that (3.1) holds true. Below we discuss some ways how to do this.
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3.1 Using the Taylor expansions

A simple extension of f ∈ V m,∞
h [0, 1] into f = fT ∈ V m,∞

h (R) satisfying (3.1)
can be constructed using the Taylor expansions:

fT (x) =





∑m−2
k=0 f (k)(0)xk/k!, x < 0,

f(x), 0 ≤ x ≤ 1,

∑m−2
k=0 f (k)(1)(x − 1)k/k!, x > 1.

(3.3)

3.2 Damping the Taylor expansions

Although the Taylor extension fT defined by (3.3) theoretically solves our
problem in a simple way, it is not the simplest extension for the practice.
Extensions f with supports in a small neighbourhood of [0, 1] are preferable
when the parameters dk =

∑
j∈Z

αk−j,mf((j + m
2 )h) of the interpolant Qh,mf

are computed, cf. (2.2). Below we present an extension fT supported on
[−(m − 1)h, 1 + (m − 1)h] and based on the damping the Taylor polynomi-
als in (3.3). Namely, represent the Taylor polynomials in (3.3) in the basis
(x+jh)m−1, j = 0, . . . , m−1, of Pm−1 for x < 0, and in the basis (x−1−jh)m−1,
j = 0, . . . , m − 1, of Pm−1 for x > 1:

m−2∑
k=0

f (k)(0)xk/k! =
m−1∑
j=0

γj(x + jh)m−1,

m−2∑
k=0

f (k)(1)(x − 1)k/k! =
m−1∑
j=0

γ′
j(x − 1 − jh)m−1.

(3.4)

Having determined the coefficients γj and γ′
j , put

fT (x) =






∑m−1
j=0 γj(x + jh)m−1

+ , x < 0,

f(x), 0 ≤ x ≤ 1,

∑m−1
j=0 γ′

j(x − 1 − jh)m−1
− , x > 1,

(3.5)

where

(x + jh)m−1
+ =

{
(x + jh)m−1, x + jh ≥ 0

0, x + jh < 0

}
,

(x − 1 − jh)m−1
− =

{
(x − 1 − jh)m−1, x − 1 − jh < 0

0, x − 1 − jh ≥ 0

}

are functions belonging to Sh,m(R). Then really fT (x) = 0 for x < −(m− 1)h
and for x > 1 + (m − 1)h. Further,

fT (x) − fT (x) =





∑m−1
j=0 γj(x + jh)m−1

− , x < 0,

0, 0 ≤ x ≤ 1,

∑m−1
j=0 γ′

j(x − 1 − jh)m−1
+ , x > 1,

Math. Model. Anal., 14(1):127–138, 2009.
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and we observe that fT − fT ∈ Sh,m(R) ⊂ V m,∞
h (R), σh,m,∞(fT − fT ) = 0.

Hence fT = fT − (fT − fT ) ∈ V m,∞
h (R) and (3.1) holds true for fT :

σh,m,∞(fT ) = σh,m,∞

(
fT − (fT − fT )

)
= σh,m,∞(fT ) = σh,m,[0,1](f).

To compute Qh,mfT by (2.2), we have to determine the missing values of
fT at the interpolation points belonging to the intervals (−(m − 1)h, 0) and
(1, 1 + (m − 1)h)). For even m, we need the values fT (−ih) and fT (1 + ih),
i = 1, ..., m − 2 , and they are given by

fT (−ih) =

m−1∑

j=i+1

(hm−1γj)(j− i)m−1, fT (1+ ih) =

m−1∑

j=i+1

(hm−1γ′
j)(i− j)m−1.

(3.6)
For odd m, we need the values fT (−(i − 1

2 )h) and fT (1 + (i − 1
2 )h), i =

1, . . . , m − 1, and they are given by

fT (−(i −
1

2
)h) =

m−1∑

j=i

(hm−1γj)(j − i +
1

2
)m−1,

fT (1 + (i −
1

2
)h) =

m−1∑

j=i

(hm−1γ′
j)(i − j −

1

2
)m−1, i = 1, . . . , m − 1. (3.7)

These formulae involve coefficients hm−1γj and hm−1γ′
j for j = 1, . . . , m − 1;

the coefficients hm−1γ0 and hm−1γ′
0 (for even m also hm−1γ1 and hm−1γ′

1) are
redundant.

Let us comment on the computation of hm−1γj , j = 1, . . . , m − 1. Differ-
entiating equality (3.4) i times and setting x = 0 we obtain after elementary
manipulations the system of linear algebraic equations with respect to hm−1γj ,
j = 1, . . . , m − 1:

m−1∑

j=1

jm−1−i(hm−1γj) =
(m − 1 − i)!

(m − 1)!
hif (i)(0), i = 0, ..., m− 2. (3.8)

If we want to compute also hm−1γ0, differentiate (3.4) once more obtaining

m−1∑

j=0

(hm−1γj) = 0. (3.9)

By the way, system (3.8), (3.9) becomes a Vandermonde system with respect
to hm−1γj , j = 0, ..., m− 1. In Example 3, we exploit this fact.

Similarly, with respect to hm−1γ′
j , j = 1, ..., m− 1, we obtain the system

m−1∑

j=1

jm−1−i(hm−1γ′
j) =

(−1)m−1−i(m − 1 − i)!

(m − 1)!
hif (i)(1), i = 0, ..., m − 2.

(3.10)
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In the practice, it is sufficient to solve only one of systems (3.8) and (3.10) since
fT (1 + ih) and fT (1 + (i− 1

2 )h) can be determined respectively from fT (−ih)

and fT (−(i− 1
2 )h) and vice versa also introducing in (3.5) the change variables

x′ = 1 − x.

Example 1. For m = 3 (quadratic splines), system (3.8) has the form

(h2γ1) + 4(h2γ2) = f(0), (h2γ1) + 2(h2γ2) =
1

2
hf ′(0),

and its solution is

h2γ1 = −f(0) + hf ′(0), h2γ2 =
1

2
f(0) −

1

2
hf ′(0).

Now (3.7) yields

fT (−
1

2
h) =

7

8
f(0) −

5

16
hf ′(0), fT (−

3

2
h) =

1

8
f(0) −

1

16
hf ′(0),

fT (1 +
1

2
h) =

7

8
f(1) +

5

16
hf ′(1), fT (1 +

3

2
h) =

1

8
f(1) +

1

16
hf ′(1).

Example 2. For m = 4 (cubic splines), system (3.8) reads as

(h3γ1) + 8(h3γ2) + 27(h3γ3) = f(0),

(h3γ1) + 4(h3γ2) + 9(h3γ3) =
1

3
hf ′(0),

(h3γ1) + 2(h3γ2) + 3(h3γ3) =
1

6
h2f ′′(0).

Eliminating (h3γ1) we find that

h3γ2 = −
1

2
f(0) +

2

3
hf ′(0) −

1

4
h2f ′′(0),

h3γ3 =
1

6
f(0) −

1

6
hf ′(0) +

1

18
h2f ′′(0),

and (3.6) yields

fT (−h) =
5

6
f(0) −

2

3
hf ′(0) +

7

36
h2f ′′(0),

fT (−2h) =
1

6
f(0) −

1

6
hf ′(0) +

1

18
h2f ′′(0);

by symmetry,

fT (1 + h) =
5

6
f(1) +

2

3
hf ′(1) +

7

36
h2f ′′(1),

fT (1 + 2h) =
1

6
f(1) +

1

6
hf ′(1) +

1

18
h2f ′′(1).

Math. Model. Anal., 14(1):127–138, 2009.
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Example 3. For m ≥ 3, let f ∈ V m,∞
h [0, 1] satisfy the boundary conditions

f (i)(0) = f (i)(1) = 0, i = 1, ..., m − 2, which appear after a suitable change
of variables, see [8] or [11]. System (3.9), (3.8), with the converse ordering of
equations in (3.8), reads as

m−1∑

j=0

jk(hm−1γj) = δk,m−1f(0), k = 0, ..., m− 1,

where δk,m−1 is the Kronecker symbol. By the Cramer rule,

hm−1γj = Dj/D, j = 1, ..., m − 1,

where

D =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1
0 11 21 . . . (m − 2)1 (m − 1)1

0 12 22 . . . (m − 2)2 (m − 1)2

...
...

...
...

...
...

0 1m−1 2m−1 . . . (m − 2)m−1 (m − 1)m−1

∣∣∣∣∣∣∣∣∣∣∣

= 1! 2!...(m− 1)!

is the determinant of the system (it is the Vandermonde determinant deter-
mined by the numbers 0, 1, . . . , m − 1), and Dj is obtained from D replacing
the column (1, j. ..., jm−1)T by the column of free terms:

Dj =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 0 1 . . . 1
0 11 . . . (j − 1)1 0 (j + 1)1 . . . (m − 1)1

...
...

...
...

...
...

...
...

0 1m−2 . . . (j − 1)m−2 0 (j + 1)m−2 . . . (m − 1)m−2

0 1m−1 . . . (j − 1)m−1 f(0) (j + 1)m−1 . . . (m − 1)m−1

∣∣∣∣∣∣∣∣∣∣∣

= (−1)m+j+1f(0)

∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
0 . . . (j − 1)1 (j + 1)1 . . . (m − 1)1

...
...

...
...

...
...

0 . . . (j − 1)m−2 (j + 1)m−2 . . . (m − 1)m−2

∣∣∣∣∣∣∣∣∣

= (−1)m−j−1 1! 2! . . . (m − 1!)

j!(m − 1 − j)!
f(0)

(the last determinant is again Vandermonde). Here we have exploited the well
known formula for a Vandermonde determinant:

∣∣∣∣∣∣∣∣∣∣

1 1 ... 1
z0 z1 ... zm

z2
0 z2

1 ... z2
m

: : : :
zm
0 zm

1 ... zm
m

∣∣∣∣∣∣∣∣∣∣

=
∏

0≤l<k≤m

(zk − zl).

Thus

hm−1γj = (−1)m−j−1 1

j!(m − 1 − j)!
, j = 1, ..., m − 1,
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and (3.6)/(3.7) takes the following form: for even m,

fT (−ih) = βi,mf(0), fT (1 + ih) = βi,mf(1),

βi,m =

m−1∑

j=i+1

(−1)m−1−j

j!(m − 1 − j)!
(j − i)m−1, i = 1, ..., m − 2;

for odd m,

fT (−(i −
1

2
)h)) = βi,mf(0), fT (1 + (i − 1/2)h)) = βi,mf(1),

βi,m =

m−1∑

j=i

(−1)m−1−j

j!(m − 1 − j)!
(j − i + 1/2)m−1, i = 1, ..., m − 1.

3.3 Approximating f (i)(0) and f (i)(1) by finite differences

It follows from the structure of systems (3.8) and (3.10) that

max
1≤j≤m−1

hm−1|γj | ≤ c max
0≤i≤m−2

hi|f (i)(0)|,

max
1≤j≤m−1

hm−1|γ′
j |) ≤ c max

0≤i≤m−2
hi|f (i)(1)|,

where the constant c depends only on m. Assume now that f ∈ Cm[0, 1].
Approximate the derivatives f (i)(0) and f (i)(1) by the finite differences based
on the differentiation of the Lagrange interpolation polynomials of degree m
with the interpolation points 0, h, ..., mh and 1−mh, ..., 1−h, 1, respectively, in
case of even m, and h/2, 3h/2, ..., (2m− 1)h/2 and 1− (2m− 1)h/2, ...1−h/2,
respectively, in case of odd m. The error of this approximation is of order
o(hm−i) that can be seen with the help of Banach–Steinhaus theorem. Thus
hif (i)(0) and hif (i)(1) are approximated with the accuracy o(hm). Hence also
the error of the solution hm−1γj , j = 1, ..., m − 1, of system (3.8) and the
error of the solution hm−1γ′

j , j = 1, ..., m − 1, of the solution of system (3.10)

are of order o(hm), and the same is true for the accuracy of the values of fT

defined in (3.6)/(3.7). In its turn, this implies that the spline approximation
fh,m = (Qh,mfT )|[0,1] is reproduced with the accuracy o(hm) in the uniform
norm ‖ · ‖∞,[0,1]: denoting the constructed spline approximation of f by Ph,mf ,
we have

‖ fh,m − Ph,mf ‖∞,[0,1]≤ εh,fhm ‖ f (m) ‖∞,[0,1],

where εh,f → 0 as n → ∞ (as h → 0) for any fixed f ∈ Cm[0, 1]. Unfortu-
nately, the best constant Φm+1π

−m in (3.2) is not maintained for the error of
Ph,mf but, nevertheless, accuracy (3.2) is achieved for any fixed f ∈ Cm[0, 1]
asymptotically as n → ∞:

‖ f − Ph,mf ‖∞,[0,1]≤ cmhm ‖ f (m) ‖∞,[0,1], (3.11)

‖ f − Ph,mf ‖∞,[0,1]≤ (Φm+1π
−m + εh,f )hm ‖ f (m) ‖∞,[0,1] . (3.12)
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Note that (3.11) remains to be true even if we use polynomials of degree m− 1
when the derivatives f (i)(0) and f (i)(1) are approximated by finite differences;
degree m is necessary for the validity of (3.12).

The interpolant Ph,mf is well defined for any f ∈ C[0, 1]. For even m,
Ph,mf is uniquely determined by the grid values f(jh), j = 0, 1, ..., n; for odd
m, Ph,mf is uniquely determined by the grid values f((j − 1

2 )h), j = 1, ..., n.
The assignment f 7−→ Ph,mf defines a projector in C[0, 1], i.e., P 2

h,m = Ph,m,

although f 7−→ (Qh,mfT )|[0,1] is not a projection. A modified approximation
Ph,mf is useful if f is given and Cm-smooth in a neighbourhood of [0, 1] – we
may use central (symmetric) differences for the approximation of f (i)(0) and
f (i)(1) that reduces the values of cm and εh,f in (3.11) and (3.12).

4 Extracting a Periodic Part and a Polynomial Part of f

Denote by Zi the space of polynomials z of degree not exceeding i + 1 and

satisfying
∫ 1

0
z(x) dx = 0. There exist unique polynomials zi ∈ Zi , i = 0, 1, ...,

such that

z
(k)
i (1) − z

(k)
i (0) = δi,k (Kronecker symbol), i, k = 0, 1, 2, ... . (4.1)

Indeed, fixing i, we have to determine the coefficients of zi(x) =
∑i+1

j=0 cijx
j

so that (4.1) holds and
∫ 1

0
zi(x) dx = 0. For k ≥ i + 1, (4.1) is trivially

fulfilled, so cij , j = 0, ..., i + 1, must be determined so that (4.1) is satisfied for

k = 0, ..., i and
∫ 1

0 zi(x) dx = 0. These conditions yield an i + 2 dimensional
triangular system with nonzeroes on the main diagonal uniquely determining
cij , j = 0, ..., i + 1. Clearly, z0(x) = x − 1

2 . Having zi in hand, it is easy to
check that zi+1 satisfies the recursion

zi+1(x) =

∫ x

0

zi(x) dx +

∫ 1

0

xzi(x) dx, i = 0, 1, . . . .

The first polynomials zi are as follows:

z0(x) = x −
1

2
, z1(x) =

1

2
x2 −

1

2
x +

1

12
, z2(x) =

1

6
x3 −

1

4
x2 +

1

12
x,

z3(x) =
1

24
x4 −

1

12
x3 +

1

24
x2 −

1

720
, . . . .

Denote by C̃l[0, 1] the subspace of functions f̃ ∈ Cl[0, 1] satisfying the

periodic boundary conditions f̃ (i)(1) − f̃ (i)(0) = 0, i = 0, . . . , l. By

P̃lf = f −

l∑

i=0

[f (i)(1) − f (i)(0)]zi

is defined a projector P̃l in Cl[0, 1] that projects Cl[0, 1] onto C̃l[0, 1] and
induces the direct sum

Cl[0, 1] = P̃lC
l[0, 1] ∔ (I − P̃l)C

l[0, 1],

P̃lC
l[0, 1] = C̃l[0, 1], (I − P̃l)C

l[0, 1] = Zl.
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Thus every function f ∈ Cl[0, 1] has a unique representation

f = f̃ + p, p =

l∑

i=0

[f (i)(1) − f (i)(0)]zi ∈ Zl, f̃ = f − p ∈ C̃l[0, 1]. (4.2)

An 1-periodic extension of a function f̃ ∈ C̃l[0, 1] is Cl(R)-smooth and we

maintain for the extension the notation f̃ . Respectively, (4.2) defines an exten-

sion of f ∈ Cl[0, 1] into the sum f = f̃ + p ∈ Cl(R) of an 1-periodic function

f̃ ∈ C̃l[0, 1] and a polynomial p of degree ≤ l + 1.
Using this extension for f ∈ V m,∞

h [0, 1] ⊂ Cm−2[0, 1] we have l = m − 2,

f = f̃ + p, p =

m−2∑

i=0

[f (i)(1) − f (i)(0)]zi ∈ Zm−2 ⊂ Pm−1 ⊂ Sh,m,

hence Qh,mp = p,

Qh,mf = Qh,mf̃ + p, σh,m,∞(f) = σh,m,∞(f̃) = σh,m,[0,1](f),

and error estimate (2.4) yields

‖ f − Qh,mf ‖∞,[0,1]≤‖ f − Qh,mf ‖∞,R≤ Φm+1π
−mhmσh,m,[0,1](f).

Thus the approximation of a function f ∈ V m,∞
h [0, 1] by splines is reduced to

the interpolation of 1-periodic function f̃ , and the optimal accuracy is main-
tained. For a periodic function the construction of the spline interpolant is well
elaborated, see, e.g., [11]. Unfortunately, the approach of the present section
is restricted to the case where we really know the values of f (i)(1) − f (i)(0),
i = 0, ..., m − 2, since approximating the derivatives by finite differences as in
Section 3.3, only the accuracy O(h2) is achieved.
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