VAGO Method for the solution of elliptic second‐order boundary value problems
Abstract
Mathematical physics problems are often formulated using differential operators of vector analysis, i.e. invariant operators of first order, namely, divergence, gradient and rotor (curl) operators. In approximation of such problems it is natural to employ similar operator formulations for grid problems. The VAGO (Vector Analysis Grid Operators) method is based on such a methodology. In this paper the vector analysis difference operators are constructed using the Delaunay triangulation and the Voronoi diagrams. Further the VAGO method is used to solve approximately boundary value problems for the general elliptic equation of second order. In the convection‐diffusion‐reaction equation the diffusion coefficient is a symmetric tensor of second order.
First published online: 10 Feb 2011
Keywords:
finite difference method, unstructured grids, Delaunay triangulation, Voronoi diagrams, convection‐diffusion problemsHow to Cite
Share
License
Copyright (c) 2010 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2010 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.