Numerical analysis of an implicit fully discrete local discontinuous Galerkin method for the fractional Zakharov–Kuznetsov equation
Abstract
In this paper we develop and analyze an implicit fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Zakharov–Kuznetsov equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditional stable and L 2 error estimate for the linear case with the convergence rate through analysis.
Keywords:
time-fractional partial differential equations, Zakharov–Kuznetsov equation, local discontinuous Galerkin method, stability, error estimatesHow to Cite
Share
License
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.