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Abstract. In this paper we develop and analyze an implicit fully discrete local
discontinuous Galerkin (LDG) finite element method for a time-fractional Zakharov—
Kuznetsov equation. The method is based on a finite difference scheme in time
and local discontinuous Galerkin methods in space. We show that our scheme is
unconditional stable and L? error estimate for the linear case with the convergence
rate O(h" ! + (At)? + (At)%h]”%) through analysis.
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1 Introduction

During the last few decades the numerical modeling and simulation for frac-
tional calculus have been the focus of many studies, and various fractional order
differential equation have been solved including e.g. space-time fractional par-
tial differential equation [10], space and time fractional Fokker—Planck equa-
tion [5], fractional order two point boundary value problem [7], the fractional
KdV equation [13], fractional convection-diffusion equation [14], fractional par-
tial differential equations fluid mechanics [15], fractional KdV-Burgers—Kura-
moto equation [16] and so on. Solving such fractional partial differential using
numerical schemes has been stimulated due to their frequent appearance in
various applications in physics and engineering.

The Zakharov—Kuznetsov (ZK) equation is a generalization of the Kor-
teweg—de Vries (KdV) equation. It was obtained by Zakharov and Kuznetsov
[19] to describe the behavior of weakly nonlinear ion-acoustic waves in a plasma
comprising cold ions and hot isothermal electrons in the presence of a uniform
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magnetic field. Several properties of this equation including existence and sta-
bility of solitary wave solutions have been extensively studied in the literature
[2, 6]. Some methods [1, 17] have been used to handle the integer-order systems,
however, to the best of our knowledge, the study of the fractional Zakharov—
Kuznetsov (ZK) equation has not been widespread.

In this paper, we consider the following time-fractional ZK equation

0%u(x,y,t)

e T+ (V2u) =0, (z,y,t) € 2x[0,T),

U(l‘,y,O) = u0($7y), WS Qv (11)

where V2 = 92 + 8; is the isotropic Laplacian. 0 < « < 1 is a parameter
describing the order of the fractional time. In this paper we do not pay attention
to boundary conditions, hence the solution is considered to be either periodic
or compactly supported.

The time fractional derivative in the equation (1.1), uses the Caputo frac-
tional partial derivative of order «, defined as [11]

1 ¢t Ou(z,y,s) ds .
fo<ax<l
Cueyt) )T o e TOSOSh
ote Au(z,y,t) , '
Nt AR if a =1,
ot

here I'(+) is the Gamma function.

There are only a few numerical works in the literature to solve the fractional
ZK equation. Molliq et al. [12] presents the approximate analytical solution of
a fractional ZK equation using the variational iteration method. Yildirim [18]
extended He’s homotopy perturbation method to derive explicit and numerical
solutions of fractional ZK equations. The discontinuous Galerkin finite element
method is a very attractive method for partial differential equations because
of its flexibility and efficiency in terms of mesh and shape functions, and the
higher order of convergence can be achieved without over many iterations.

In the present paper we propose an implicit fully discrete local discontinuous
Galerkin (LDG) finite element method for solving time-fractional ZK equation.
Our fully discrete scheme is based on a finite difference scheme in time and lo-
cal discontinuous Galerkin methods in space. Stability is ensured by a careful
choice of interface numerical fluxes. We prove that our scheme is uncondition-

ally stable and L? error estimate for the linear case with the convergence rate
O(R*1 4 (A1)? + (At)o‘/2hk+%).

This paper is organized as follows. First we introduce some basic notations
and mathematical preliminaries, then in Section 3 we discuss the fully discrete
LDG scheme for the fractional ZK equation (1.1), and prove that the scheme
is unconditionally stable, and the numerical solution is convergent. Finally in
Section 4 concluding remarks are provided.
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2 Notations and Auxiliary Results

2.1 Notations and projection

In the domain [a,b] X [c,d] we define cells
Lj={(x,y)z g So<zg, y1 Sy<yi},
fori=1,...,Ng, j=1,...,N,, where
a=r1 <rz <o <Ty 41 =D, c=yr <ys <--<Yy,41 =d,

We define [; and J; as: I; = [v;_1,2;,1], Jj = [y;-1,y;1] for i =1,..., N,
j=1,...,N,. SowehaveI]:IxJ

We denote by u 1y and u,_ i+l the values of u at x;, /2, from the right

cell I;41 x J; and from the left cell I >< Jj when y € J;, on all vertical edges,
respectively. Similarly, we denote by u 41/2 and u_ 2.j41/2 the values of u at
Yj+1/2, from the top cell I; x Jji1 and from the bottom cell I; x J;, when
x € I;, on all horizontal edges, respectively.

Define the space Vf as the space of tensor product piecewise polynomials

of degree at most k in each variable on every element, i.e.

ViF={v:ive QNI x Jj), Y(z,y) € [; x Jj, i=1,...,N,, 5=1,...,N,}.

2.2 Projection

In order to prove the error estimates for two-dimensional problems in Carte-
sian meshes, we use the same projections as in [3]. However, for the sake of
completeness, we present the definition. First, we will give the projection in
one dimension [a, b], denoted by P, i.e.,for each j,

/ (Pow(z) — w(z))v(z) =0, Yve P*(I,),
I;
and special projection P, i.e., for each j,

/I (P;'w(x) — w(x))v(x) =0, Yo € PF1(Iy), P;w(xj_l) = w(z,;_

/ (P, w(x) — w(z))v(z) =0, Yv e PFHI), Prw(@, 1) =w(@1)
I; 2

Similarly, we can also define the projection Py, 79 s Py

On a rectangle [a, b] X [¢,d], for a function w(z, ) deﬁne

Pw =P, ® Pyw(z,y), Prw="PfePlw(z,y), (2.1)

where the subscripts indicate the application of the one dimensional operators
P or P* with respect to the corresponding variable. We list some properties
for the projections PP:

/Iv /J (]P’iw(m,y) — w(z, y))v(m,y) dydx =0, (2.2)
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for any v(z,y) € (P*~1(I;) ® P*(J;)) U (P*(I;) ® P*~1(J;)). Also

/ (]P>—~_"‘)(:I;7y,J'r 1) - w(x,yjfl))v(gc,yf 1) = 07 Vv € Qk(IZ ® JJ)a
I J—3 2 J—3

i

/1. (Prw(z,yy, ) —wlzyy))vey;, ) =0, WweQ¥Liold) (23)

and

/ <P+w($;r_lay) - W(:Tif%?y))’l)(l'j_l,y) =0, Wwe Qk(Ii ® J])a
J 2 2

J

/J (Bl yo0) — wlaigy,)ole, 0) =0, Yo eQML® ). (24)

J

For the projections (2.1), the following inequality holds [3, 8]
oot + Al o + 2 o]l < CnFH, (2.5)

where w® = Pw—w or w® = P*w—w. The positive constant C, solely depending
on w, is independent of h. ||w®|| and ||w®||,, denote the L?-norm of w® on §2
and 73, which are

= (32 2 [ e

1<i<N; 0<5< N,

l\)\»—‘

ol = (3 / Vor,) + (@) )y
0<i<N,.
T SR R RO R R
0<j<N,

respectively, and ||w®||cc = esssup |w®|. Here and below we use C' to denote a
positive constant which may have a different value in each occurrence.
2.3 Numerical flux

In this paper we will be using the flux g(¢~, ¢1) which is related to the dis-
continuous Galerkin spatial discretization. g(¢—, ¢*) is a monotone numerical
flux, which is dependent on the two values of the function ¢ at the discontinuity
point x; 1 and satisfies the following conditions:

(i) it is locally Lipschitz continuous, so it is bounded when ¢* are bounded;
(ii) it is consistent with the flux g(¢), i.e., g(¢, ) = g(d);

(iii) it is a nondecreasing function of its first argument, and a nonincreasing
function of its second argument.

Math. Model. Anal., 17(4):558-570, 2012.
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3 Fully Discrete LDG Scheme

In this section we introduce the numerical scheme for the solution of equa-
tion (1.1). Let At = T/M be the time mesh size, M is a positive integer,
t, =nAt,n=0,1,..., M be mesh point. An approximation to time fractional
derivative (1.2) can be obtained by simple quadrature formula given as [9]

1
6°‘u(x,y,t 1 * n} :b 33 Yyt m) _u(xvyatn—m—l)
2 —a)

o gy +" (2, y),

(3.1)
where b, = (m + 1)1 —m!=% 4"(z,y) < C(At)?2~%, C is dependent on u,
T, a. We know that

1=bp>by >by>--->b,>0, b, —0(n— o),

Z 1 —bp)+b, =1 (3.2)
=1
We rewrite Eq. (1.1) as a system:

p=Ug, q=DPz, S=TUy, T =Sy,

0%u(x,y,t)
o™

Let ull, py, g, v, s% € V¥ be the approximations of u(-, t,,), p(, tn), (-, tn),
(-, tn), s(-, ty), respectively, f"(x) = f(x,t,). With (3.1), we define a fully
discrete local discontinuous Galerkin scheme as follows: find uj, p}, g5, 7}, sp €
th, such that for all test functions v, p,&,n, ¢ € Vh}“,

b d b d N, d
[[uivds dy—ﬂ( [ otuerdeay =3y [ (@ )iy, - @) y) dy>
a c a c =17

b pd No  pd ,\
— 5(/ / qp v, dz dy — Z/ ((qﬁv_)wé?y (qngr)Z_i%’y) dy)
a C Z=1 C
b pd Ny b .
—5</ / T,’fvydscdy—Z/ ((rﬁv_)szrl - (7’ZL1}+)M_l y) dx)
a Je j=1"7a R A
n—1 b rd b pd
= Z(bm,l —bm)/ / upy” "vde dy—f—bn,l/ / uhv d dy, (3.3)
m=1 a Jc a Je
b pd No  rd -
/QQZpdxdyﬂL/a/c Phpz dz dy —;/ ((PZP_)H%,y—(PZf)i,%,y)dy:0,
b pd No pd L
/Qpﬁﬁ dx dy+// upé, dx dy— Z/ ((uﬁﬁ_)H%W — (u25+)i,%,y) dy =0,
a C Z=1 C

b pd No  nd
/rﬁn dx dy+ // Sy dx dy — Z/ ((3277_)”1 y_<5277+)i,l y) dy =0,
2 ade i1 /e 2 3
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b pd Ny b N
/stdxdw//u;;d)y da:dy—Z/ (w567, o —(uho"), ,_y ) da=0,
aJc j=17a

where = (At)*I'(2 — o). From (3.1) we know the truncation error is v"(z).

The “hat” terms in (3.3) in the cell boundary terms from integration by
parts are “numerical fluxes”, in order to ensure stability, we can take the fol-
lowing choices simply

uf = ()", =0, = ()", up= (),

=t ==l =GR (34)

here 7 > 0. In order to control the boundary terms, a dissipative term is added
in the flux 7. The flux g((u}’) ™, (u}’)™) is a monotone flux as described in (2.3).
Examples of monotone fluxes which are suitable for the local discontinuous
Galerkin methods can be found in, e.g., [4]. For example, one could use the
Lax—Friedrichs flux, which is given by

g 7) =5 (g(w™) +g(w™) = Ao(w —w7)), Ao = max|g'(w)].

N =

w W

We remark that the choice for the fluxes (3.4) is not unique. In fact the

crucial part is taking @ and 1;27 from opposite sides, 1;% and ;,’f from opposite
sides.

Since the problem is nonlinear, we can use an iterative method to solve the
problem. Now the definition of the algorithm is complete.

Next we consider the numerical analysis of the scheme (3.3). First we
examine the stability property.

Theorem 1. For periodic or compactly supported boundary conditions, fully-
discrete LDG scheme (3.3) with flux (3.4) is unconditionally stable, and the
numerical solution uj satisfies

N d Ny b
lag|* + 8 / ([Ph]" + [s]7)y w2873 / [uf],, s de
i=1"¢ j=17¢

< [l8I,

n=20,1,..., M.

Proof. Taking the test functions v = u}, p = Bpp, & = —Bq, n = Bsy,

Math. Model. Anal., 17(4):558-570, 2012.
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¢ = —pr} in scheme (3.3), and with the fluxes choice (3.4) we obtain
/8 2 Ny b 2
||uhH +ﬁG Z/ ph +[s1] i_%,y dy—i—ﬁTZ/ [“Z]x,j—% dz
i=1’e
+ 5 Z/ (@1 (uhs i) iy, = (Uit ai) oy, + O1(uhai),_y ) dy

Z/ @y (up, i), g4l %(uh,rh) i1 +@2(u27r2)m’j_%)d9€
a

= m—1 — bm // 2Ty de dy + by,— 1/ /uhuhdxdy, (3.5)

w (upt, qp) = —(qp) " (up) ™ +af (up) ™+ (ar)
Oy (upt, i) = = ()~ (up) ™ 4+ (up)” +up (i),
O1(upqf) = —(g) () + (a) ()" + @ (up)” —qp(up)”
YA (. n\Tt
+uh<qh) _uh(qh )
O (uf, ) = — (i)~ ()™ + () " (up) " g ()T ()
+up () —up ()"

If we take fluxes (3.4) then after some simple calculatlon we easily obtain
O1(uf, qp) = Oa(up, ) = 0. Let us denote G(u) = [ g(u)du, and use a
mean value theorem, then for the nonlinear term we obtaln

B No  d
G =Y [ (@@ -], ,,dv =0, (3.6)
i=1v¢

where 7 is a value between (uj;).~ 1y and (uﬁ)j‘_ 1y By the monotonicity of

flux function g we have the inequality (3.6).
Then based on the equation (3.5), and by the property (3.2), we can get

H h|| +ﬁ2/ Ph Sh 2 i_%, dy+572/ uh

j=17¢

= Z(bm_l // T up de dy + by — 1// uhuhd:rdy
m=1
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n—

1
< D mer = bun) [ || + b || | |
m=1

—m 1 n
< 5 (X er =t + b)) + 5l

m=1

A
—

that is

|mwwz/ph CIRNRTRETS o) AT
j=1"9

< 5 (s = b+ 8 (37)
m=1

We will prove the Theorem 1 by mathematical induction. When n = 1, and
from the inequality (3.7), we have

Nm d Ny b
ol [ (A + 5417y 20 [ [d]E, o < B
i=1"¢ j=1"¢

m=1,2,..., K. Let take n = K + 1 in the inequality (3.7), then we obtain

+1|| +5Z/ K—‘rl K+1] i %7 dy+267_2/ K-‘rl wj_f

K
s S e R 1
m=1

K 9 9
< (0 s = b+ [ < [

m=1

This finishes the proof of the stability result. O

Next we will state the error estimate of the scheme for the linear case
g(u) = u, and use (3.4) as our flux choice. We have the following theorem.

Theorem 2. Let u(x,y,t,) be the exact solution of the problem (1.1), u} be
the numerical solution of the fully discrete LDG scheme (3.3), then there holds
the following error estimates

lu(,y,tn) = ut]| < (R + (A1) + (A ERMTE).

Proof. For convenience we define the notations
b pd No  rd
R(w,@; ¢) :// Wy dzdny/ (@07 )ity — @¢1)ii1,) dy,
(w,w; @) = / / wey dx dy — Z/ (We™) e+l (w¢+)x7j_%)dx.

Math. Model. Anal., 17(4):558-570, 2012.
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It is easy to verify that the exact solution of PDE (1.1) satisfies

b pd b pd
/ / (gt do dy + B / / 2 (o da dy — BR(ulz, g, to), u(, y, t); 0)
— BR(q(z,y,tn), q(x,y, tn);v) — BZ(r(z,y,tn), 7(x,y, tn); v)

n—1

= Z(bm,l - bm)/ / w(z, Y, tn—m)vdrdy + by /b/d u(z, u, to)vde dy,
;n:; a Jc a Jc

// q(x, y, tn)pde dy + R(p(x, y, tr), p(e, y, tn); p) = 0,

(lb Cd

// p(x,y, tn)€ de dy + R(u(z,y, tn), u(z,y, tn); €) =0,

ab Cd

/G/ r(,y, ta)nde dy + R(s(x,y,tn), s(z,y,tn); 1) = 0,

b pd
[ st ta)odedy + 2 (ute.goto). oot 0) =0 (3.5)
Denote
er =u(z,y,tn) —up, =P el — (P u(z,y,tn,) — u(z, y,tn)),
62 = Q(‘raya ) Z =P ZL - (Pq(.’ﬂ y,t ) Q(x y,t ))7
ep = p(x,y,tn) — P = Pey — (Pp(z,y,tn) — p(x,y,tn)),
er =r(x,y,tn) — 1) = Pey — (Pr(z,y,tn) — (2, y,tn)),
ey = s(x,y,t,) — s, = Pey — (Ps(z,y,tn) — s(z,y,tn)). (3.9)

Subtracting (3.3) from (3.8), and with the fluxes (3.4) we can obtain the
error equation

b opd
/ / ehvdrdy — BR(eL, (en) v) = BR(ey, (ef) "50) = BZ(ef () T5v)
—|—/ e pdxdy—i—R(eg,(eg)Jr;P)+/Q€Zfdffdi‘/+7€(32a(ez>i§§)
/e ndxdy + R(eZ, (e 5)+;77) / evpdrdy + Z(ey, (e}) 39)

n—1
- (bm—1— bm) // e "vdrdy — by— 1//evd:cdy
1

+ﬁ/ab/cd (myvdx-i-BTZ/ zjldx—O

Taking v = P~ey, p = BPey, & = —fPey, n = BPey, ¢ = —FPe;.
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Using (3.9), the properties (2.2) and (2.3) gives

/b/d(Pez)de+ﬂT§/b[Pez]2 L da
@ ;i a ]2
MRS ,
52/ + [Pep ] [Pe?] )i—%w dy
b pd - b
:AK (’Piu(x,y,tn)_U($7y,tn))P7€Zd$dy_ﬂl /C'Yn(x,y)’Perdxdy

ﬂZ/ {(Pa(@,y,t)—a(w,y,1.)) " [P~}

(Psxy, s(z,y,t )) [Pe}
(Pp:cy, p(z,y,t )) [Pe]}, 1ydy

n—1
+> (bm-1—bm //P*e“ mP= e dady+by,_ 1//73*6 P el dady

m=1

n—1

_ // (P w(@,y, tnem) — w(@,y,tnm)) P~ el dzdy

- B / Pr(z,y,t,) —r(z,y,t )) [P‘e"} ._%da:
j=1-9

z,]

- bn—l / / (,P_u(.f, yvtO) - u(l‘a y7t0))73_ez dx dy

< (HP_U 2,y tn) — u(z,y,tn)|| + B2 (2,9)|]

+ by u(z,y,to) — u(x,y,to) H

+§; i1 = B[P @,y ts) = ulw,y, b)) [P el

53 [ (Prtant = s
- (PS(I',y, n) - S($7y’t"))+ [Pe?]

— (Pp(z,y,t0) — p(x,y,ta)) " [Pel] Yioa,

Ny, .
- ﬁZ/ (Pr(x, y,tn) — 7"(ac,y,tn))Jr [7D—esz_l dz

+ ( S (bt — b)) |[ P + banPegH) IP=en].

m=1

From the fact that ¢y < ep? + ﬁwz, and the property (2.5), we know that

Math. Model. Anal., 17(4):558-570, 2012.
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there exists a positive constant C', such that
b pd No  od
// (’P_eZ)de—i-gZ/c ([P=ex)® + [Per]” + [Pe?]Q)i_%ﬂdy
Ny p N
+ ﬂTZ/a [Pfeﬁ]iﬁj_% dx
"~ Ny b
< C(RH 4 (A1) + (A FRFH2)° 4 &-;/a [P_emij_% da

B Na  nd 12 n12 a2
+ZZ/ ([P=es]” + [Pep]” + [Pel]’), s, dy
i=1"7¢

2

n—1

2 1 b o
#(Ztwtlper = blpel ) + 5 [ (e

m=1

Choosing a small enough € < 7, we can obtain
[P~en||? < C(BF + (Ab)? + (A1) S RF3)?
n—1 2
+ 2( S (br — b [P + bn_1||7362||)  (3.10)
m=1

We prove the error estimate by mathematical induction. When n = 1, the
equation (3.10) becomes

[Pel||* < C(hF' + (A1)? + (A FRH2)? 4 2| P~
It is easy to see that [|[P~el|| < Ch¥*1 then
[Pel|| < C(hMH1 + (A1) + (A EhF+3).
Next we suppose the following inequality holds
[P=em|| < C(A** + (A)? + (A FRFHE), m=2,3,...,K.  (3.11)
When n = K + 1, from the equation (3.10), we deduce

[P=e5H[* < O(RFH 4 (A1) + (An) S hb+3)°
K 2
; 2( S (b — ) [P bKHp—egH) .

m=1

By the expression (3.2), the assumption (3.11), we can get the following
result immediately

[P=el+| < O(RMY 4 (A6)? + (At)Fh*HE).

Thus Theorem 2 follows by the triangle inequality and the interpolating
property (2.5). O
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4 Conclusion

In this paper an implicit fully discrete local discontinuous Galerkin (LDG)
finite element method is presented for a class of two-dimensional time-fractional
Zakharov—Kuznetsov equation. The method is based on a finite difference
scheme in time and local discontinuous Galerkin methods in space. Stability
is ensured by a careful choice of interface numerical fluxes. We prove that our
scheme is unconditional stable and L? error estimate for the linear case with the
convergence rate O(h*T! + (At)2 + (At)E h*T2). To date we are not aware of
any similar results in published papers. Although not addressed in this paper,
the method and analytical technique can also be extended to other kinds of
time-fractional equations and higher-dimensional problems easily.
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