Solvability of boundary value problems for singular quasi-Laplacian differential equations on the whole line
DOI: https://doi.org/10.3846/13926292.2012.686068Abstract
This paper is concerned with some integral type boundary value problems associated to second order singular differential equations with quasi-Laplacian on the whole line. The emphasis is put on the one-dimensional p-Laplacian term involving a nonnegative function ρ that may be singular at t = 0 and such that
. A Banach space and a nonlinear completely continuous operator are defined in this paper. By using the Schauder's fixed point theorem, sufficient conditions to guarantee the existence of at least one solution are established. An example is presented to illustrate the main theorem.
Keywords:
second order singular differential equation with quasi-Laplacian on the wholeline, integral type boundary value problem, fixed point theoremHow to Cite
Share
License
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.