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Abstract. This paper is concerned with some integral type boundary value prob-
lems associated to second order singular differential equations with quasi-Laplacian
on the whole line. The emphasis is put on the one-dimensional p-Laplacian term
[@(p(t)a(t, z(t),z'(t))x'(t))]’ involving a nonnegative function p that may be singular
at ¢t = 0 and such that fioo p‘fz) = f0+°° p‘zz) = +o00. A Banach space and a nonlinear
completely continuous operator are defined in this paper. By using the Schauder’s
fixed point theorem, sufficient conditions to guarantee the existence of at least one

solution are established. An example is presented to illustrate the main theorem.
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1 Introduction

The multi-point boundary-value problems for linear second order ordinary dif-
ferential equations (ODEs) were initiated by II'in and Moiseev [15]. Since
then, more general nonlinear multi-point boundary-value problems (BVPs)
were studied by several authors, see the paper [8, 9, 10, 19], the text books
[1, 13, 14], the survey papers [11, 18] and the references therein. However,
the study of the existence of solutions of differential equations on the whole
real line with nonlinear differential operators does not seem to be sufficiently
developed [5].

Differential equations governed by nonlinear differential operators have been
widely studied. In this setting the most investigated operator is the classical p-
Laplacian, that is @,(z) = |z|P~2x with p > 1, which, in recent years, has been

* Supported by the Natural Science Foundation of Guangdong province (No.
S$2011010001900) and the Guangdong Higher Education Foundation for High-level tal-
ents.



424 Y. Liu

generalized to other types of differential operators, that preserve the mono-
tonicity of the p-Laplacian, but are not homogeneous. These more general
operators, which are usually referred to as @-Laplacian (or quasi-Laplacian),
are involved in some models, e.g. in non-Newtonian fluid theory, diffusion of
flows in porous media, nonlinear elasticity and theory of capillary surfaces. The
related nonlinear differential equation has the form

[@(")]" = f(t,,a"), t€ (=00, +00),

where @ : R — R is an increasing homeomorphism such that ¢(0) = 0. More
recently, equations involving other types of differential operators have been
studied from a different point of view arising from other types of models, e.g.
reaction diffusion equations with non-constant diffusivity and porous media
equations. This leads to consider nonlinear differential operators of the type
[a(t,z,2")P(x’)]’, where a is a positive continuous function. For a comprehen-
sive bibliography on this subject, see e.g. [11, 16, 18].

n [17], the authors study a class of BVPs for the second order nonlinear
ordinary differential equations on the whole line. Two theorems have been
proved. The first one is established by the use of the Schauder theorem and
concerns the existence of solutions, while the second one deals with the ex-
istence and uniqueness of solutions and is derived by the Banach contraction
principle.

In [12], the authors study the boundary value problem [a(z(t))®(2'(t))] =
ftx(t),2'(t), t € (—o0,400), z(—0) = v1, x(+00) = va, establishing the
existence and non-existence of heteroclinic solutions.

In [5], Bianconi and Papalini investigate the existence of solutions of the
following boundary value problem

[@(2'(1))] +a(t,z(t)b(a(t),2'(t)) =0, teR, (1.1)
Jim_a(t) = a(~00) =0, lim_a(t) = #(+00) = 1,
where @ is a monotone function which generalizes the one-dimensional p-Lapla-
cian operator. A criterion for the existence and non-existence of solutions of
BVP (1.1) is established. In [2, 4], Avramescu and Vladimirescu study the
following boundary value problem

2" (t) +2f ()2’ (t) + (t) + g(t,x(t)) =0, tE€R, (1.2)
t_l)iinoox(t) =: z(+00) = 0, im 2'(t) =: 2’ (+o0) = 0,

where f and g are given functions. The existence of solutions of BVP (1.2) is
obtained. In [3], Avramescu and Vladimirescu study the following boundary
value problem

2" (t) +f(t, (t ) ’(t)) =0, teR, (1.3)

under some adequate hypothesises and using the Bohnenblust-Karlin fixed
point theorem, the existence of solutions of BVP (1.3) is established.



Solvability of BVPs for Singular Quasi-Laplacian Differential Equations 425

Cabada and Cid [6] prove the solvability of the boundary value problem on
the whole line

/!

[@(z' ()] + f(t,z(t),2'(t)) =0, teR,
lim z(t)=-1, lm z(t)=1, (1.4)

t——o0 t——+oo

where f is a continuous function, @ : (—a,a) — R is a homeomorphism with
a € (0,+00), i.e., & is singular. Calamai [7] and Marcelli, Papalini [17] discuss
the solvability of the following strongly nonlinear BVP:

[a(z())®(z' ()] + f(t,x(t),2'(t) =0, teR, (1.5
= 1

t_l)lr_noox(t)za, tl}I-Poox(t) 5,

(=]
=

where a < [, @ is a general increasing homeomorphism with bounded do-
main (singular @-Laplacian), a is a positive continuous function and f is
a Caratheodory nonlinear function. Conditions for the existence and non-
existence of heteroclinic solutions in terms of the behavior of y — f(¢, z,y) and
y — P(y) asy — 0, and of ¢t = f(¢,z,y) as |t| = +oo are established. The
approach is based on fixed point techniques suitably combined to the method
of upper and lower solutions.

Motivated by the mentioned papers, we consider the more general BVP
for a second order singular differential equation on the whole line with quasi-
Laplacian operator

B(plt)alt. (0.2’ ) O] + F(t.o(0).2' (1) =0, te R )
+oo +oo
t_lillnoop(t)a(t,m(t),x'(t))x’(t)—[ a(s)z(s) dSZ[ g(s,z(s),2'(s)) ds,

+o0 +oo
tiigloo p(t)a(t,z(t), o' (t))a' (t) + ijB(s)x’(s) ds = / h(s,z(s),2'(s)) ds,

— 00

where

e pc CYR,[0,+00)) with p(t) > 0 for all ¢ # 0 satisfies

/ " dsfp(s) = +oo, / " ds/ols) = +oo.

— 00

Denote 7(t) = ‘fot ds/p(s)‘.

e a:RxRXxR — (0,400) is continuous and satisfies that there exist
constants m > 0, M > 0 such that

mSot(t7 (1+T(t))x,y/p(t)) <M, teR, x€R, yER

and for each r > 0, |z, |y| < r imply that a(t, (1 +7(t))x,y/p(t)) = a1eo
uniformly as ¢t — £oo.

e f, g, h defined on R? are nonnegative Caratheodory functions.
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e a,3: R — [0,+00) are continuous functions satisfying

/_iooooz(s)ds>0, /_—:Cooiégds<+oo,

/O+Ooa(5)/osp(f:)ds<+oo, /Owa(s)/sopc(ii)d5<+oo.

e ¢ € C'(R) (a quasi-Laplacian operator) is continuous and strictly increas-
ing on R, #(0) = 0 and its inverse function denoted by ®~! is continuous
too, moreover ¢! satisfies that there exist constants L > 0 and L,, > 0
such that @~ !(z129) < L&~ (x1)®~ 1 (22) and

SNy + - Fan) < Lo[@ ) + -+ 8 ()],
;>0 (i=1,2,...,n).

It is well known that ®(s) = |s|P~2s with p > 1 is called p-Laplacian. One
sees that quasi-Laplacian contains p-Laplacian as special case. But @(s) =
is a quasi-Laplacian not a p-Laplacian.

By a solution of BVP (1.7) we mean a function x € C'(R) such that

s
1+s2

®(paz’) : t — D(p(t)a(t, z(t),z'(t))2'(t))

belongs to W11(R) and all equations in (1.7) are satisfied.

The purpose is to establish sufficient conditions for the existence of at least
one solution of BVP (1.7). The results in this paper generalize and improve
some known ones since the quasi-Laplacian term [®(p(t)a(t, z(t), 2'(t))z'(t))]
involves the nonnegative function p that may satisfy p(0) = 0.

The remainder of this paper is organized as follows: the preliminary results
are given in Section 2, the main results are presented in Section 3. An example
is presented in Section 4 to illustrate the prototype of the main theorem.

2 Preliminary Results

In this section, we present some background definitions in Banach spaces and
state an important fixed point theorem. The preliminary results are given too.

Let X be a Banach space. An operator T; X — X is completely continuous
if it is continuous and maps bounded sets into relatively compact sets.

Lemma 1 [Schauder]. Let X be a Banach space and 2 C X a nonempty,
bounded, open and convex subset of X. Let T': {2 — X be a completely contin-
uous operator with T(02) C £2. Then T has a fixed point in (2.

DEFINITION 1. f: RXx RX R — R is called a Carathédory function if it satisfies
(i)t = f(t, (14 7(t))z,y/p(t)) is measurable for any =,y € R,

(ii) (z,y) = ft, (1 +7(t))z,y/p(t)) is continuous for a.e. t € R,
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(iii) for each 7 > 0, there exists nonnegative function ¢, € L'(R) such that
|u|, |v| <7 implies

(1, 70)uv/0(0)| < 601), acteR

Define
r € C°(R), px’ € C°(R)
X=<z:R— R t— 1_7_(:()” is bounded on R
t — p(t)z’(t) is bounded on R

For x € X, define the norm of x by

4
lz|l = max{supx(”, Supp )| (¢ |}
ter 1+ 7(t)

One can prove that X is a Banach space with the norm ||z| for z € X.

Lemma 2. Suppose that x € X. Denote

+oo T a(r), 2 (1)) dr
o] = — |f(7‘,x(7’),1‘/(7‘))|d7"+¢( _oooo r ),
/m L+ 73 sty O
J23 h(r,a(r), @/ (r)) dr >
—).

too B(r)
1+ f—oo p(r)a(r,z(r),z’(r)) r

- /+Oo|f(r,x(r),a:’(r))|dr + gb(

— 00
Then there exists a unique constant A, € [01,02] such that

. o0 B(s)D Y (Ay + [ f(r,a(r), 2 (r)) dr)
RS /_oo P)als, (), 2'(s))

+oo
- / h(r,z(r),2'(r)) dr = 0. (2.1)

— 00

ds

Furthermore, it holds that

oo > n (r))| dr
|Am|§/ ‘f(r,x(r),a:’(r)”dr—i—@(f [, 2(r), (7)) ), (2.2)

+o0 i
L4 [T 55k dr

where M is defined in Section 1.

Proof. Since z € X, f, h are Caratheodory functions, then

z|| = maxq sup ,sup p(t)|x'(t =r < 400,

and both

+00 oo
/ f(r,z(r),2'(r)) dr and / h(r,a(r),a'(r)) dr

—00 —00

Math. Model. Anal., 17(3):423-446, 2012.
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converge. Let

0 B(s)B e+ [ fr,a(r), 2! () dr)

G =eta+ [ p(s)as, 2(s), 2/ (5)) "
+oo
_/_ h(nx(?‘),x/(?”)) dr.

Since f+oo B() 45 < +00, then G(c) is well defined on R. Tt is easy to see that

oo p(s)

G(c) is strictly increasing on R. We find that

j;o h(r,z(r),z'(r)) dr
Gl =571 (= Trteton s o OO )

+ 2% sty
+00 B(s) (. al ]
+/_oo (5)als,2(s), 7 () ( /_ £ ( (r)|d

fjo(f h(r,z(r),z'(r)) dr Yoo /
w(lﬂ’ MQ*/ f(r,xm,x(r))dr)ds

)

[ e
5 5 x(<)> 7oy 7 <¢<1+;§;°hwd)>
/

p(ria(r.z(r),z’(r))

/3(T) -
2(r),a (1)) <
+/+°c B(S) ds J23 h(r,a(r), @/ (r)) dr

S O R ) B e 3 W

=0.

Similarly we find that G(o2) > 0.
Hence there exists a unique constant A, € [01, 03] such that (2.1) holds. It
is easy to see from A, € [01, 02| that (2.2) holds. The proof is complete. O

Define the operator T': X — X by

YAy + [ f(ra(r), 2/ (r)) dr)
(Tz)(t) = Sl ()fmx(s),x/(s) et (2.3)
5,2 HAs + [ fra() ) dr)
v p(s)als, z(s), ' (s)) CET

where A, satisfies (2.1) and

(A, + fjo(f flryz(r),z'(r))dr) — fj;o g(r,x(r), o' (r)) dr
[+ a(s) ds

oo
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oo s @ (An+ 1 fra(r),a’(r)) dr)
Jo ~als) Jy p(w)a(u,z(u)a” (u) duds

J72 als)ds
0 0 o (Ag+ [F> f(r,x(r),2’ (1)) dr)
T ffoo O[(S) fs p(u)a(u,z(u),z’(u)) du ds (2 4)
J23 als)ds ' '

Lemma 3. The following properties hold:
(i) Tz satisfies

[B(p(t)a(t 2(t), 2’ ())(T2) () + f(t,2(t),2'(1) =0, tER,
limy oo p(t)a(t, z(t), 2’ (1) (T)' (t) — [ a(s)(Tx)(s) ds
= 732 gls,w(s), 2/ (s)) ds, (2.5)

lims—,s 100 p(t)a(t, z(t), 2’
= f:;o: h(s,z(s),2'(s)) ds.

(ii) T : X — X is well defined.

(iii) z € X is a solution of BVP (1.7) if and only if x is a fized point of T
m X.

(iv) T is completely continuous.

Proof. (i) Let x € X, by Lemma 2, each A, is uniquely determined. Hence B,
is well defined. So Tz is well defined. Since f, g, h are Caratheodory functions,
then

o) = max{sup L s 0o/ (]} = < o
and
+oo +o00 o0
[ f(rz(r),2'(r)) dr, /7 g(r,x(r), ' (r)) dr, [ h(r,z(r),z'(r)) dr

converge. From the definitions of A, and B,, we get

T G a2 ) ir).

It is easy to see that (2.5) holds.
(ii) From the assumptions imposed on «, 3, p, we know that ¢t — (Tx)(¢)
is continuous on R and (Tz)(t)/(1 + 7(t)) is bounded on R. Furthermore,

A+ [T S a(r), 2 () dr)
a(t, x(t), ' (t)) '

It is easy to see that ¢t — p(t)(Tx)’(t) is continuous on R and p(t)(Tx)'(t) is
bounded on R. It follows that Tz € X. Hence T : X — X is well defined.

p(t)(Tx)'(t) =

p(t) T2y () = 2 (2.6)

Math. Model. Anal., 17(3):423-446, 2012.
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(iii) It is easy to see that x € X is a solution of BVP (1.7) if and only if =
is a fixed point of T in X.

(iv) The following five steps are needed (Steps 1-2 imply that T: X — X
is continuous and Steps 3-5 imply that 7" maps bounded sets into relatively
compact sets). It follows that T': X — X is completely continuous.

Step 1. We prove that the function A, : X — R is continuous in z.
Let {z,} € X with ,, = 29 as n — oo. Let {4, } (n =0,1,2,..
constants decided by equation

.) be

L o B)2 (Aw, + [ S an (), 2 () dr)
SN o(5)a(5, 2n(5), 7 () ‘
+oo
—/_ h(r,@n(r), z;,(t)) dr = 0.

Corresponding to x,, (n =0,1,2,...). Since x,, — o as n — 00, there exists an
My > 0 such that ||z,|| < My (n =0,1,2,...). The fact f, g, h are Carathédory
functions means there exists ¢y, € L*(R) such that

£t (0),2,0) = £ (1 00), ~ p()2(0)) < Gae (), T € R

p(t)
gt xn(t),2,(1) < dary(t),  h(t,n(t), 2,(1) < Par(t), t € R.
Then
+00 Foo
/ f(r @ (r), @, (r)) dr < / b, (1) dr < oo,
-T-Ooo _jooo
/ g(r,xy(r), 2, (r)) dr < / b, (1) dr < oo,
oo hoo
/ h(r, @, (r), ), (r)) dr < / b, (1) dr < oo.
So, by (2.2), we have
e , J23 I, a(r), ' (r))| dr
|Az, S/_oo ‘f(r,x(r),a: r))’ds—i—@( 1+f+:o° Agp(l) 0 )
+o0 fjooj b, (s) ds
< [ wis o, b g W)

which means that {A,, } is uniformly bounded. It follows that

/+°° B (Aw, + [ F(ran(r), () dr)
. pls)als, an(s), 7, (s)
1 [T0B) B e g o aols) ds
< . p()“5 ( [w¢M°( e ”5( 1+ [P 20 >>
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Suppose that {A,_ } does not converge to A,,. Then there exist two subse-
quences {A, (1>} and {ATn @} of {4, } with A, LA and Arnk (2) — Ca
as k — oo, but c1 # ¢ca. By the construction of AQEn (n =1,2,...), we have

/+oo BEP (A + [ fr.all) (1), 28 () dr)

A 1)+ ! *
Ty —00 p(S)a(S nglk)(S%x'(ﬂlk) (S))
—+o00
_ / h(r, x%lk) (1), xgzlk)/(t)) dr = 0.

Let k — oo, using Lebesgue’s dominated convergence theorem, the above equal-
ity implies

ds

. 499 B (Agy + [ J(r,0(r), ah(r) d)
o7 )+ [ p(s)a(s, 70(), 7h(5))

+oo
— / h(r,zo(r), zH(t)) dr = 0.

—00

Since {4, } is unique with respect to xg, we get ¢; = A,,. Similarly, c; = A, .
Thus ¢; = c2, a contradiction. So, for any x, — xo, one has A, — A,,, which
means A, : X — R is continuous.

Step 2. We show that T is continuous on X. Since A, is continuous, then
B, is continuous too. From the continuity of A, and B,, and since f, g, h are
Caratheodory functions, the result follows.

To prove that T maps bounded sets into relatively compact sets, we must
prove that T'D is relative compact. Recall W C X is relatively compact if

(i) it is bounded,

(ii) both {%ﬁ(t) x € W} and {p(t)(Tx) : x € W} are equi-continuous on
any closed subinterval of (—o0, 400),

(iii) both {1+T(t cx € W} and {p(t)(Tz)': « € W} are equi-convergent at
t = —o0,

(iv) both {1+T(t) cx € W} and {p(t)(Tx)': « € W} are equi-convergent at
+

Hence we must do the following three steps.

Step 3. We show that T maps bounded subsets into bounded sets. Let
D C X be a given bounded set. Then, there exists My > 0 such that D C {x €
X: |lz|| € Mp}. Then there exists ¢py, € L'(R) such that

P2’ (0)| < or(0), teR,
{g(t,x(t),x/(t)” < ¢)Mo (t)a |h(t,(L’(t),£L‘/(t))’ < ¢Mo (t)v t € R. (27)

Math. Model. Anal., 17(3):423-446, 2012.
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So

—0o0

“+o0 +oo
/ |f(r,x(r),a:'(r))| dr < [ O, (1) dr < 00,

+oo +o0
/ |g(r,x(r),x r))|dr§/ P, (1) dr < 0o,
“+o0 +oo
/ |h(r,2(r), 2’ (r))| dr < / a1, (r) dr < oo. (2.8)
Similarly we have
+oo 400
ds
|Az| < / YN ds—|—q'>< - +i)OMOﬂ((r)) ) =: M; < o0,
. 1+ f s Mp(r dr
B, = ‘ A+ [T f O a(r), (T))dr) — [T g(rx(r), 2/ (r)) dr
’ I a(s) ds
+00 s &~ +j+°° frz(r),x’(r)) dr)
. fO (S) fo p(w)a(u,z(uw),z’ (u)) duds
ff a(s) ds
0 (A, +j+°° flrz(r),z’ (r)) dr)
+ S als) J = ety duds
J73 als)ds
- (M + [ dary (r) dr) + [ by (r) dr
- J3 als)ds
(;LOO S)L)Smduds@ M1—|—f G, (1) dr)
+ +o
m[ 2
. )5 5 du|dsd5 (M; +fj;j’ bz, (1) dr)
+ Foo =: My < 4o00.
m [" 7 afs)ds
Therefore,
A f(ra(r),a’ (r)) dr)
(T2)(t)] _ {m(t 1By + fy T L s s, ¢ >0,
1+ 7(t) 0 & H(Au+[F f(ra(r),a(r))dr)
B = i P(S)alsa(s),27(s)) ds|, t<0,

M; + %Ti@ Iy ﬁ ds®H (My + [ ¢ngy (r) dr), >0,

M, + m 1+T(t) ft p( ) ds®~

IN

IMg < +00.

My + %Qfl(Ml + fjoos G, (1) dr),
My + Lo~ (M + fjof b, (1) dr),

LMy A+ [ g (r) drr),

t <0,
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On the other hand, we have

~1 % L 2w () du
ol ey - 177 +aJ(}t’jé):x/((t;) —

< %@—1(1\41 +/+OO bt (1) dr) =: M.

—00

Then

Tx)(t
|(Tz)| = max{sup M)(),supp(t)|(Tx)'(t)|} < max{Ms, My} < +o0.
ter 1L+ 7(t) "ter
So, {Tz: x € D} is bounded.
Step 4. Let D be a bounded subset of X. We prove that both {%f(t) txT €

D} and {p(Tz)': x € D} are equi-continuous on each finite subinterval [— K, K]

on R. Suppose that D C {z € X: ||z|| < Mp}. Forany K > 0, t1,t3 € [- K, K]

with t; <9 and x € X | since f, g, h are Caratheodory functions, then there

exists ¢pz, € L*(R) such that (2.7) and (2.8) hold. One sees that (2.6) holds.
First, we consider |p(t1)(Tz) (t1) — p(t2)(Tx) (t2)|. One sees that

p(t:)(T) (t1) — p(t2)(T)' (t2)]
_ ‘¢_1(Az+ S flra(e), @ (r)dr) @7 (Aut [ fra(r), 2/ (r)) dr)
a(tl,x(tl),x’(tl)) a(tg,l‘(tg),l‘/(tg))
_ (B (At [, fr,2(r), 2 (7)) dr) — &7 (At [0 f(r,2(r), 2/ (r)) dr))|
- a(tl,x(tl),x’(tl))
1 e (Y dr 1 _ 1
e C%+Af(”(””)”> Y R o]
_ (B (At [, frya(r), 2 (7)) dr) — 87 (Ap+ [0 f(r,2(r), 2/ (1)) dr)|

1 - 1 ’
a(ty, z(ty),2'(t1))  alte, z(t2), 2/ (t2)) |

+oo
+o! <M1 + A, (1) dr)

Since

—+oo
< bu, (r) dr + My =: 7,
(o]

‘Am + /t+o}(r,x(r),x’(7")) dr

and @~ 1(s) is uniformly continuous on [—r,r], then for each € > 0 there exists
p > 0 such that |s; — sa| < pu with sy, s € [—r,7] implies that |®#~1(s1) —
@~ 1(s2)| < m/2e. Since

D(p(t1)a(ty, z(tr), 2/ (1)) (T) (1)) — (p(ta)a(te, x(ta), 2’ (t2)) (Tx) (t2))]
[ ). ar

2

ta
< dpm(r)dr — 0 uniformly as t1 — to,
t1

Math. Model. Anal., 17(3):423-446, 2012.
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then there exists o1 > 0 such that |t2 — ¢1] < o1 implies that
D (p(t1)a(ty, z(t), 2" (t1)) (Tz) (t1))
q;( (t2)a(ta, x(t2), @' (2)) (T) (t2))] < -
Thus |t1 — t2] < o1 implies that
’P(tl a(t,z(tr), 2’ (t1)) (T ) ( )
= |27 (2 (p(t1)a(tr, ( )
— &1 (®(p(t2)a (t27

t2))
= )43‘1 (Am + /:oof( )dr)

(s /f}@,x(ﬂ,w o)

2

(tz)a( ( 2), 7' (t2)) () (t2))|

\/b

<m
— €.
2

Since 1/a(t, z(t),«'(t)) is uniformly continuous on [—K, K], then there exists
o9 > 0 such that |to — ¢1| < oo implies

1 1 ‘ < 1
a(tlv'r(tl)ax/(tl)) Cl(tg,l‘(tg),l‘/(tg)) @_1(M1 +fjoO: ¢Mo( )d’l")

w\m

Hence |t; — t2| < min{oy, 00} with t1,ty € [~ K, K] implies that
|p(t1)(Tz)' (tr) = p(t2)(Tx) (t2)| < e. (2.9)
Now, we consider |(Tx)(t1)/(1+ 7(t1)) — (Tx)(t2) /(1 + 7(t2))].
Case 1. 0 < t; <ty < K. By (2.3), we have
'<Tx><t1>  (To)(ta) 1 1

T+ 7(t)  1+7(t2) 1+7(t) 1+7(t)

b1 8L (Aut S F(r(r),0! (1)) dr) b2 &L (Aurt S F(r(r),0! (1)) dr)
Jo (a0 (), () ds Jg NORCEOEIO) ds

1—|—T(t1) 1—|—T(t2) ’

1 1 [t L +oo
_ ——ds P~ rYdr + M
T m ), o™ < o (r) >

/tz (A, + fs+°° f(ryz(r),z'(r)) dr)
p(s)a(s,z(s), 2'(s))

to “+00
< My|r(t) — 7(t2)| + %/ 1d3¢1(/ dato () dr+M1>
t1 —00

p(s)
T ) T 1) /;2 % ds @™ ( /_:O $auo (r) dr + Ml)
1 to

1 oo
<M2"T tl - T tg ‘-f— dSQs_l(/ ¢N[O(T)dT+M1>
m Jy, p(s) oo

< |Be

"
§ M2|T(t1) — T(tg)‘ —+

1 1
1+T(t1) 1+T(t2)

ds

i

1

+ Lire) - sl ([ owar o).
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Case 2. —K <t <ty <0. We have similarly that

(Tz)(t1)  (Tz)(t2)
1—|—T(t1) 1—|—T(t2)

< Mo|7(t) — 7(t2)| + % /: % dsd51< /+Oo bty (r) dr + Ml)

—0o0

1 _ oo
+E|T(t1)_7—(t2)|¢ 1(/ ¢MO(T)dT+M1>.
Case 3. —K <t1 <ty < K. We have

’(Tﬂf)(tl) _ (Ta)(t2)
1+T(t1) 1+T(t2)

1 1
= |Bw| -
1+T(t1) 1+T(t2)

0 7 (Apt [ f(ra(r), 3 (r)) dr) ds f O (Aut+ [ fra(r),2 (r)) dr) ds
f 7(5)a50(),7(5) 0 7(5)a50()(5) ‘
14+ 7(t1) 14+ 7(t2)

gMg‘T(tl)—T(tg)‘—i—;/b g)dsqs (/_jmfo(deMl)

1 +oo
+m|7'(t1)—7'(t2)|¢1(/ ¢MO(T)dT+M1>.
From Cases 1-3, we get
(Tz)(t1)  (Tz)(t2)
1+ 7(t1) 14 7(t2)
Then there exists o3 > 0 such that [t; — 2| < o3 with ¢,t3 € [-K, K]
implies
Tx)(t Tx)(t
@)t _ Tw))| 210
1—|—T(t1) 1+T(t2)
Then (2.9) and (2.10) imply that both {75 Tm :x € D} and {p(Tz)": x € D}

are equi-continuous on [— K, K]. So both {1+T @ TE D} and {p(T ) cx €D}

are equi-continuous on each finite subinterval on R.
Step 5. Let D be a bounded subset of X. We show that both {%f(t) T €

D} and {p(Tz)": x € D} are equi-convergent at +oco and —oo respectively.
‘ (Tz)(t) _ P~'(As)

+

— 0 uniformly as t; — to.

1+7(t) ay
b (At [ f(ra(r) @’ () dr) ~
< _Bal Jo P(8)a(s,2() 27(s)) s o I(Az)’
—1+7(t) 14+ 7(t) at
t B (At [ ()@ (1)) dr) (A 2 L(A)
< M J p(s)a(s,2(s)2'(s) ds —Jy * o(s >a ds af
S 1+7(0) 1+ 7(t)

_ t 1 @’1(A1+j;+°° f(r,z(r),x’(r)) dr) qS_l(Az)
M+ '(My)/ay n Jo 55 a(s,2(s),7'(5)) 2y |ds

= 14 7(t) 1+ 7(t)

Math. Model. Anal., 17(3):423-446, 2012.
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It is easy to know that there exists 77 > 0 such that ¢ > T} implies

My + o 1 (M
0< M2+ (M) /a+ <&
1+ 7(t) 2

t>1T.

Similarly to Step 4, we can get that ®~1(A, + j:_oo flryx(r), o' (r)dr) —
&71(A,) uniformly as ¢t — +oo. Together with that

x(t) 1

=t mp(t)x'm) —ay

a(tz(t) @' (1) = a(t, (1+ (1))
uniformly as t — +00, we know that

_ +oo / —
T +af€t x(J;)<r;;g/:((t7;))’ L ;(Am) — 0 uniformly as ¢ — +o0.
, R +

Then there exists 75 > 0 such that

‘¢_1@4w+-ﬁ+a3f03$0ﬁwﬂ(ﬂ)df) o~ (A,)
a(t, z(t), ' (t)) ay

€
<=, t>Th
2 2

Then

(A,
K ) | (2.11)
at+

0T (0) - ‘

Furthermore, ¢t > max{T},T»} =: T3 implies that

1+7(t) ay
t P (Aut [T f(ra(r),a’ () dr) o~ (A,
+ fO : | ( B ai ) ‘ ds

’(Thﬂ(ﬂ G

<€ p(s) a(s,2(s),27(5))
2 14+ 7(t)
T3 1 |‘1571(Am+f3+°° f(rz(r),z’(r)) dr) P N(Ag) | ds
_ € Jo 5 a(5,2(5) .27 (5)) at
1+ 7(t)
t 1 2T (Aet [ fra(n)a’ (n)dr) 671 (AL)
+Em@‘ ala®3) ay o lds
1+ 7(t)
Ts 1 4571(M1+f;°° P (r)dr) o1 (M) t 1
<§4,%SM@dS( R ) L elnamds
-2 1+ 7(t) 2 1+7(t)

It is easy to see that there exists Ty > T3 such that

fTs 1 _ds (45*1(M1+fj;° DM () dr) " = 1(M))

0 p(s) m at
t>Ty.
1+ 7(t) =6 !
Hence 1
Tx)(t P (A
(Tx)(2) (Az) <€+€+E_2€, t>Ty. (2.12)

1+7(t) a4 2 2
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So (2.11) and (2.12) imply that both {p(Tz)": x € D} and {%f(t) x € D} are
equi-convergent at +oo.

Similarly we can prove that both {%f(t) x € D} and {p(Tz)': x € D} are
equi-convergent at —oo. The details are omitted.

From Steps 3-5, we see that T" maps bounded sets into relatively compact
sets. Therefore, the operator T : X — X is completely continuous. The proof
is complete. 0O

3 Main Theorems

In this section, the main results on the existence of solutions of BVP (1.7) are
established.

Let L and L,, be defined in Section 1. For nonnegative functions a,b, ¢, ay,
bi,c1 and ag, by, co € L*(R), we denote

+ s 0 0
L, L Jy ™ als) o ey duds + [ 0(5) J, gy duds
o0 = —

m m fj;: a(s)ds 7
T ba(r) + ea(r)) dr T ba(r) + ca(r)) dr
Ar = oo o042 Foo B(s)
o a(s)ds L+ 2 370 98
—+oo +oo
+00L2L3L§51<2 / b(r) d7'> +JOL2L3L§Z§1(2 / c(r) dr),
[ o (r) + ca(r)] dr
A = Lo +oo _B(s)
m(1+ [ s 95)
“+o0 +oo
+ (L2L3Lq5*1(2 / b(r)dr) + LoLs L&~ (2 / c(r) dr)) /m.

Theorem 1. Suppose that there exist nonnegative functions a, b, ¢, a1, b1, ¢1
and as, by, co € LY(R) satisfying Ay < 1, Ay < 1 and

1

f(t, (1+7(t))z, Wt)y) <a(t) +b()®(|z]) +c()®(ly]), z,y<€R, tE€R,
1

\g(t, (1+ 70z, )| S @) + @l + el wyeR teR

h(t, (1+7(t))a, Ly) < as(t) +ba(t)|z] + ca(t)|yl, z,y€R, teR.

Then BVP (1.7) has at least one solution.

Proof. We will apply Lemma 1 to prove this theorem. Let X and T be defined
in Section 2. From Lemma 3, T': X — X is a completely continuous operator.
Let

f_tf ay(r)dr fj;o as(r) dr
M5 maX{W +0—0L21+f+00 5(5) d ++O—0L2L3
—00 —oo Mp(s) §

Math. Model. Anal., 17(3):423-446, 2012.
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x@l(z/m >’L2 [ as(r) dr L2L3¢_1(2fj;oa(r)dr)}.

+oo s
—oo m(l+4 " ]\52(1) ds) m

Choose
My > M5/(1 — max{A;, Aa}). (3.1)

Now we define 2 = {z € X: ||z|| < My}. We will show that T(92) C 2. In
fact, if © € 992, with ||Tz|| > My, then by definition of norm || - || we have

0<la(®)l/(1+7(0) <My, p(t)]a"()] < My, teR
By the definition of T', together with (2.4), we get

(A + [17 flra(r) ' (1) dr) = [ g(r,a(r), 2/ (r)) dr

B,| = =
= fjoo a(s)ds
+o00 s 45’1(Ax+f;r°° f(r,z(r),z’(r)) dr)
o ") fo (@) alaa(w),a (@) duds
fjooj a(s)ds
0 0 @’I(Aerf:rm flrz(r),z’(r)) dr)
+ Joos)J; Plw)aliye (@), () duds
fjoooo a(s)ds
+oo
- 2o lglryx(r), 2 ()] dr
N fj;o a(s)ds
“+o0 s 0 0
1+ [, als) [, p(lu) duds+ [~__a(s) [, p(lu) duds
m fj;: a(s)ds
+o0
h(s,z(s),z'(s))ds +oo
% 45_1 @ ffoo | ( ( ) ( )) +2 f(’l’,l'(r),xl(r)) d?” .
1 +oo  B(s) d
+f,oc Mp(s) S %
Then
sup |Tx(t)\/(1 + T(t))
teR
t " (Awt+ [ f(ra(r),a’(r)) dr)
‘ B, n fO p(s)a(s,z(s),z’(s)) ds‘ >0
- 1+ 7(¢) 1+ 7(¢) ’ =7
T ier I AL S 2 0 )
‘ Bk P(s)a(s,2 ()2 () ‘ £ <0
1+ 7(t) 1+ 7(t) ’ -7
t |7 H(Ag+ [T° F(rz(r),z’ (r)) dr
Ba | Jo T L Il g
+ ,2(s), L t>0,
< 1+ 7(t) 1+ 7(t) -
= [0 LT AL St ) )]
| Ba| ¢ p(s)a(s,2(5),2(5)) £ <0
1+ 7(%) 1+ 7(¢) =



Solvability of BVPs for Singular Quasi-Laplacian Differential Equations 439

Pt [ ) ) d)|

|B,| + p(s) . >0,
< sup m(1+7(t))
T teR N |27 (Aw 5 F(ra(r) 2’ () dr)|

B.| + t p(s) , <0,

[Bel m(1+7(t)) =

PO L L e A (G QI )L TR
< sup ! m(1+7(t)) o=
- 0 _ 00

ter ) b5 dsle Ay + [ f(ra(r), 2/ (r)) dr)]
|Ba| + , t<0,
m(1+ 7(t))

“+oo
<|B.|+ |¢ (A, Jr/ f(r,a:(r),a:’(r))dr)|/m

s/ifmvwv»fv»mw/ija@ww

e’} s 0 s
N {1 N 1 +f0+ a(s) [ p(lu) duds+ [~ __a(s)| [, p(lu)du|ds}
m mfj—;; a(s)ds

<o <¢ ( fTJrh}g(za(?)l)(z ds) e /_:O fr,a(r),2'(r) dr)

:/_:O |g(r,x(r),x’(r)>|dr//_ja s)ds

o () o T )

</:fmwwv»fv»mw/ifasds

JES s w5), /(s ))ds+¢1<2 +Oof(r,gc(r),g;'(r))drﬂ

1+ ftf 1\522) -

e [ (r)| Y
< [ @) )RS el dﬂ/
ﬁzm&wwxﬂﬂ%+@m<nm

+ ool l:

+ 0oL > B(s
1+ 75 J\gp()) ds
+00
+ ogLad ! <2 / [a(r) + b(r)@(ﬂfi%) + c(r)é(p(T)|$'(7")|)} d?“)

+o0 +oo
< [ @@+ bl + @l [ at)ds

— 00

routa [ faa) +balal +x(olel ar/ (1 [ 2C)as)
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+oo
+ ogLlo® ! (2/_ [a(r) + b(r)¢(||ac||) + c(r)@(HxH)] dr)
+o0 too
s/l mum+bamwn+quMmﬁ[[ a(s) ds

+oo +oo s
+oula [ faal) + blel + exlr)lal ar/ (1 [ 7

+o0 +oo
+ O’QLQLgQSil (2/ CL(’I‘) d?") + UoLQLgLQSil <2/ b(?") dT’) HZL’”

+oo
+ 0oLy L3 Lot (2/ e(r) dr) llz|l
+oo

fjof ay(r)dr fj;j as(r)dr B
:m+UOL21+I+m 30 y + ogLoL3® 1 Z/G(T)d?"

oo Mp(s) —0o0

ds)

+oo +o0
+[mem+avmﬁ+ f [b2(r) + ca(r)] dr

400 gLz +o0 s
I a(s)ds + 70 Af/()(l)d

+oo
+ﬁ@@@¢4@/ WMO+@@%#¢ (/ )Lm
— 00

It follows that

+o0 too
T d d
) _ T ande [l dr

sup < = ~ B(s
ter 1+7(t) = [T a(s)ds L+ 7 Agf»a)s) ds

+oo
+ 00L2L3¢_1 (2/ a(r) d?“) + AIMO- (32)

Similarly, we have
+oo
sup p(t)|(Tz) (t)| < sup 27 (As + J, rya(r), a'(r)) dr)|

f(

teR teR ( (t), 2’ (t))
+oo +oo +oo

< (L2 /_Ooag(r) dr/(1+ N B ds) + 12 /_Ooa(r) dr))/m

()d)

+o0 Foo
—l—”:lll[Lg/_ [bg +02 d’l’/( B i ()
+oo

+oo
+L2L3L<Z5‘1(2/ b(r)dr) + LoL3L&™! / }

— 00

It follows that

aup ()| (T ()] < 15— 22"
>~ L2
teR m(1+ f+:oo A%b(l) ds)
Lo L&~ (2 [12 a(r) dr)
+

m

+ Ay M. (3.3)
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Then (3.2) and (3.3) imply that
ITz|| < Ms + max{A;, As} M. (3.4)
It follows from ||Tz| > My that
My < M5/(1 — max{4, Ag}),
a contradiction to (3.1). So T(9§2) C 2. Thus Lemma 1 implies that the
operator T has at least one fixed point in §2. So BVP (1.7) has at least one

solution. O

Corollary 1. Suppose that there exists r > 0 such that

(e (14 7(6)2, —y ) at < © +Oooz(s)ds,

oo (t) 3/
[ [0 rene )< iz (0 [ SR )
/:O f<t, (1+7(t)a, (lt)y> dt < ;¢<302L2>,

where x,y € [—r,r]. Then BVP (1.7) has at least one solution.

B

b

)

Proof. From Lemma 3, T : X — X is a completely continuous operator. Now
we define 2 = {x € X: ||z|| < r}. For any = € 012, ||z|| = . So

|z (t)] )
su < su t)lx'(t) <r.
t€£1+7()_ te}gp()‘ ()|

By the assumptions, similarly to the proof of Theorem 1, we get

Ta(t) _ S22 g(r,a(r), 2l (r))] dr

sup < —
ter 1 +7(t) fjoo a(s)ds
+oo
h(s,z(s),z'(s))ds +oo
+ooLs J oo | (+Oo( ;S)( i) —|—¢_1(2/ f(r,z(r),2'(r)) dr)}
+f oo Mp(s) ds —oo
<z4z+z=r=]al
=3T3yl
Furthermore,

sup p(t)|(T)' (1)
teR

too 00
< ;(LQ 1_|:Lf+oo< >g( (;)|d8 + Lyd™! (2/; |f(r,x(r),x’(r))|dr)>

oo Mp(s
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+oo  B(s)
1 L+ 20 3750 s) 2
< ( oo 30 +L2r)3 — <= |al.
mdoglo 1+f oo TTp(s) ds maog

So ||Tz|| < ||z|| for all x € 9. Similar to the process in Theorem 1, the result
follows. The proof is complete. 0O

Corollary 2. Suppose that
“+o0
maxz,ye[fd,d] f,m |f(83 (1 + T(S))J}, p(ls) y)‘ ds

li =
A 5(d) 0
I maXg ye[—d,d) fj_:oo |g(87 (1 + T(S)).’IJ, p(l )y)| ds _
d—gﬁr-loo d -
. maXg ye[—d,d] f_Jr:oo |h(8, (1 + T(S))l’, p(ls) y)‘ ds

lim =
d—+o00 d

Then BVP (1.7) has at least one solution.

Proof. Let

1t 1 T B(s) 1
z—:—mln{g/oo a(s)ds, 3”0[/2(1+/00 Mp(s) ds>, 5@

Then, there exists r > 0, such that

/;: ( (14 7(s)), 1)y) ds<§/_:oa<s>ds+,w
[ (s 0 rone )o@

[l e i) on= 32( )

By Corollary 1, BVP (1.7) has at least one solution. The proof is com-
plete. O

<302L2>}'

b

b

4 An Example

Now, we present an example to illustrate Theorem 1.

Ezample 1. Consider the following problem

)3[x<t>]3

t
/ elsl ds
0

[@(e Ma(t, (1), 2/ (£)2'(1))]" + A {eﬁ 1 Ji 2 (1 "

It]
1+4+¢4

+oo
Jim e ta(t, z(t),2' ()2 (t) —/_ e~ 2slz(s)ds = 0,

+ eI [m’(t)]s} =0, teR,

“+oo

lim e ‘a(t,z(t), 2'(t))2’(t) —l—/ e 21slg! (s) ds = 0, (4.1)

t—+oo o



Solvability of BVPs for Singular Quasi-Laplacian Differential Equations 443

where A € R is a constant, ®(x) = |z|?z is a one-dimensional p-Lapalcian.
Then BVP (4.1) has at least one solution if

277 (V2 +1)3

Proof. Corresponding to BVP (1.7), we have &(z) = |z|?z, p(t) = e~ !l with

() = Cds | (et -1, t>0,
! B 0 p(S) B _1+6_t> t <0,
2 2
alt, x,y) =2+ —— + it a(t) = A(t) = 721,

TrrOF 22 g2
e 1 Lol o It s 3
flt,z,y) = Xle +1—|—t2 1+ e'®lds z° 4+ ——e "ty
0

and g(t,z,y) = h(t,z,y) = 0.
One can show that

e pc C%R,[0,4+00)) with p(t) > 0 for all t € R satisfies

0 1 —+o0 1
——ds = 400, / —— ds = +o0.
/m p(s) o p(s)

e a:Rx R xR — (0,+00) is continuous and satisfies

2<a(t,(1+7(t)z,y/p(t)) <4, teR, z€R, yeR

We find that

and for each r > 0, |z|,|y| < r imply that

2 2

x y
a(t, (L+7(t)z,y/p(t) =2+ AT ) 122 + M 1 42 = Utoo = 2

uniformly as t — £o0.

e a,3: R — [0,+00) are continuous functions satisfying

/;OO a(s)ds >0, /+OO a(s) /S cfr) ds < +oo,

/Ooocv(s)/S CZ ds < +o0, /+Ooﬁzds<+oo

Tt is well known that (s + t)% < 85 4+ 13 for all s,t > 0.

e &(z) = |z|?x, is continuous and strictly increasing on R, #(0) = 0 and
its inverse function is = !(z) = |z|~3z for  # 0 and ~(0) = 0 is
continuous too, moreover 1 satisfies that there exist constants L > 0
and L,, > 0 such that @~ !(zy25) < L&~ (21)P 1 (22) with L =1 and

PN+t 2n) < Lo [P (@) + o+ D (@)
holds for all x; >0 (i =1,2,...,n) with L, = 1.
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e f, g, h defined on R? are nonnegative Caratheodory functions. To apply
Theorem 1, choose

_ 1 1
)= \e, b(t) = N—s, o) =|A
a(t) = le™,  b(0) =Nz <) =T

al(t) = ag(t) = bl (t) = bg(t) = C1 (t) = Cg(t) =0.

It is easy to show that a,b, ¢, ay,b1,c1,as,ba,co € LY(R) and

(8 (e p(lt v)| < alt) +b(OO2(al) +cB(y)), wyeR teR
(04 7)o —50) | O + @l + a0l wye R teR
n(t (4 70), 50| < ax(t) + bOlel + a0l wy e Rt R

By direct computation, we get

1 +f a(s) [y ﬁduds—kf?oo a(s) fs p(u) duds 3

1,
m mf_tf a(s)ds -2
gl () +am)d o (r) + ea(r)] dr

oolLs

c
+°Oa(s)ds 1—|—f-~_;fJ ]\?;( 5 ds

+o0 +oo
+%M@ml@/ wwﬁ+%umml@/ mmﬁ

—0o0 — 00

gg =

A =

— S () ),

o lba(r) + ca(r)] dr

+
m(1+ [T 58 ds)

LoLs L&~ (2 [T220(r) dr) + Lo Ly L~ (2 [T ¢(r) dr)
+

m

Ay = Lo

1
= SIALE (2] % + 7%).
It follows from Theorem 1 that BVP (4.1) has at least one solution if

27 (V2 +1)3
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