On periodic solutions of liénard type equations
Abstract
The Liénard type equation x'' + f(x, x')x' + g(x) = 0 (i) is considered. We claim that if the associated conservative equation x'' + g(x) = 0 has period annuli then a dissipation f(x, x') exists such that a limit cycle of equation (i) exists in a selected period annulus. Moreover, it is possible to define f(x, x') so that limit cycles appear in all period annuli. Examples are given. A particular example presents two limit cycles of non-convex shape in two disjoint period annuli.
Keywords:
multiple solutions, second-order equation, periodic solutions, limit cyclesHow to Cite
Share
License
Copyright (c) 2013 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2013 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.