A maximum principle for a fractional boundary value problem with convection term and applications
Abstract
We consider a fractional boundary value problem with Caputo-Fabrizio fractional derivative of order 1 < α < 2 We prove a maximum principle for a general linear fractional boundary value problem. The proof is based on an estimate of the fractional derivative at extreme points and under certain assumption on the boundary conditions. A prior norm estimate of solutions of the linear fractional boundary value problem and a uniqueness result of the nonlinear problem have been established. Several comparison principles are derived for the linear and nonlinear fractional problems.
First Published Online: 21 Nov 2018
Keywords:
fractional differential equations, Caputo-Fabrizio fractional derivative, maximum principleHow to Cite
Share
License
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Badr Saad A. Atangana and T. Alkahtani. Extension of the resistance inductance, capacitance electrical circuit of fractional derivative without singular kernel. Advances in Mechanical Engineering, 7:1–6, 2015.
Thabet Abdeljawad. Fractional operators with exponential kernels and a Lyapunov type inequality. Advances in Difference Equations, 2017(1):313, Oct 2017. https://doi.org/10.1186/s13662-017-1285-0.
M. Al-Refai. Basic results on nonlinear eigenvalue problems of fractional order. Electronic Journal of Differential Equations, 2012(191):1–12, 2012.
M. Al-Refai. On the fractional derivatives at extreme points. Electronic Journal of Qualitative Theory of Differential Equations, 2012(55):1–5, 2012. https://doi.org/10.14232/ejqtde.2012.1.55.
M. Al-Refai. Reduction of order formula and fundamental set of solutions for linear fractional differential equations. Applied Mathematics Letters, 2018(82):8– 13, 2018. https://doi.org/10.1016/j.aml.2018.02.014.
M. Al-Refai and T. Abdeljawad. Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. Advances in Difference Equations, 2017(315), 2017. https://doi.org/10.1186/s13662-017-1356-2.
M. Al-Refai and Y. Luchko. Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Frac. Cal. Appl. Anal., 17(2):483–498, 2014. https://doi.org/10.2478/s13540- 014-0181-5.
M. Al-Refai and Yu. Luchko. Analysis of fractional diffusion equations of distributed order: Maximum principles and its applications. Analysis, 2015. https://doi.org/10.1515/anly-2015-5011.
B.S.T. Alkahtani and A. Atangana. Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order. Chaos, Solitons and Fractals, 89:539–546, 2016. https://doi.org/10.1016/j.chaos.2016.03.012.
A. Atangana. On the new fractional derivative and application to nonlinear fisher’s reaction-diffusion equation. Appl. Math. Comput., 273(15):948–956, 2016. https://doi.org/10.1016/j.amc.2015.10.021.
D. Baleanu, K. Diethelm, E. Scalas and J. Trujillo. Fractional calculus: Models and numerical methods, nonlinearity and chaos. Series on Complexity, Boston, 2016. World Scientific.
M. Caputo and M. Fabrizio. A new definition of fractional derivative without singlular kernel. Prog. Fract. Differ. Appl., 1(2):73–85, 2015. https://doi.org/10.12785/pfda/010201.
M. Caputo and M. Fabrizio. Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl., 2(1):1–11, 2016. https://doi.org/10.18576/pfda/020101.
J.F. G´omez-Aguilar, M.G. L´opez-L´opez, V.M. Alvarado-Mart´ınez, J. ReyesReyes and M. Adam-Medina. Modeling diffusive transport with a fractional derivative without singular kernel. Physica A, 447(1):467–481, 2016. https://doi.org/10.1016/j.physa.2015.12.066.
J.F. G´omez-Aguilar, L. Torres, H. Y´epez-Mart´ınez, D. Baleanu, J.M. Reyes and I.O. Sosa. Fractional Li´enard type model of a pipeline within the fractional derivative without singular kernel. Advances in Difference Equations, 2016(1):173, Jul 2016. https://doi.org/10.1186/s13662-016-0908-1.
J.F. G´omez-Aguilar, L. Torres, H. Y´epez-Mart’inez, C. Calder´on-Ram´on, I. Cruz-Orduna, R.F. Escobar-Jim´enez and V.H. Olivares-Peregrino. Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy, 17:6289–6303, 2015. https://doi.org/10.3390/e17096289.
E.F.D Goufo. Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Bergers equation. Mathematical Modeling and Analysis, 21(2):188–198, 2016. https://doi.org/10.3846/13926292.2016.1145607.
J. Hristov. Transient heal diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s kernel to the CaputoFabrizio time-fractional derivative. Thermal Science, 20(2):757–762, 2016. https://doi.org/10.2298/TSCI160112019H.
Y. Luchko. Maximum principle for the generalized time-fractional diffusion equations. J. Math. Anal. Appl., 351:18–223, 2009. https://doi.org/10.1016/j.jmaa.2008.10.018.
X. Meng and M. Stynes. The Green’s function and maximum principle for a Caputo two-point boundary value problem with a convection term. J. Math. Anal. Appl., 461(1):198–218, 2018. https://doi.org/10.1016/j.jmaa.2018.01.004.
E. Karimov N. Al-Salti and K. Sadarangani. On a differential equation with Caputo-Fabrizio fractional derivative of order 1 < β ≤ 2 and application to mass-spring-damper system. Progr. Fract. Differ. Appl., 2(4):257–263, 2016.
A. Pedas and E. Tamme. Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math., 263(13):3349–3359, 2012. https://doi.org/10.1016/j.cam.2012.03.002.
M. Stynes and J. L. Gracia. A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA Journal of Numerical Analysis, 35(2):698–721, 2015. https://doi.org/10.1093/imanum/dru011.
V. Tarasov. No nonlocality, no fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 62:157–163, 2018. https://doi.org/10.1016/j.cnsns.2018.02.019.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.