Robust difference scheme for the Cauchy problem for a singularly perturbed ordinary differential equation
DOI: https://doi.org/10.3846/mma.2018.031Abstract
Grid approximation of the Cauchy problem on the interval D = {0 ≤ x ≤ d} is first studied for a linear singularly perturbed ordinary differential equation of the first order with a perturbation parameter ε multiplying the derivative in the equation where the parameter ε takes arbitrary values in the half-open interval (0, 1]. In the Cauchy problem under consideration, for small values of the parameter ε, a boundary layer of width O(ε) appears on which the solution varies by a finite value. It is shown that, for such a Cauchy problem, the solution of the standard difference scheme on a uniform grid does not converge ε-uniformly in the maximum norm; convergence occurs only under the condition h ε, where h = d N −1 , N is the number of grid intervals, h is the grid step-size. Taking into account the behavior of the singular component in the solution, a special piecewise-uniform grid is constructed that condenses in a neighborhood of the boundary layer. It is established that the standard difference scheme on such a special grid converges ε-uniformly in the maximum norm at the rate O(N −1 lnN). Such a scheme is called a robust one.
For a model Cauchy problem for a singularly perturbed ordinary differential equation, standard difference schemes on a uniform grid (a classical difference scheme) and on a piecewise-uniform grid (a special difference scheme) are constructed and investigated. The results of numerical experiments are given, which are consistent with theoretical results.
Keywords:
singularly perturbed Cauchy problem, ordinary differential equation, boundary layer, a priori estimates, standard difference scheme, uniform grid, piecewise-uniform grid, maximum norm, solution decomposition, robust difference schemeHow to Cite
Share
License
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.