Analysis of the Darcy-Brinkman flow with viscous dissipation and non-homogeneous thermal boundary condition
DOI: https://doi.org/10.3846/mma.2026.24073Abstract
This study investigates the steady-state Darcy-Brinkman flow within a thin, saturated porous domain, focusing on the effects of viscous dissipation and non-homogeneous boundary condition for the temperature. Employing asymptotic techniques with respect to the domain’s thickness, we rigorously derive the simplified coupled model describing the fluid flow. The mathematical analysis is based on deriving the sharp a priori estimates and proving the compactness results of the rescaled functions. The resulting limit model incorporates contributions of viscous dissipation and thermal boundary conditions and thus could prove useful in the engineering applications involving porous media.
Keywords:
viscous dissipation, porous medium, non-homogeneous boundary conditions, asymptotic modelingHow to Cite
Share
License
Copyright (c) 2026 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A.K. Al-Hadhrami, L. Elliott and D.B. Ingham. A new model for viscous dissipation in porous media across a range of permeability values. Transport in Porous Media, 53(1):117–122, 2003. https://doi.org/10.1023/A:1023557332542
G. Allaire. Homogenization of the Navier-Stokes equations in open sets perforated with thiny holes I. Abstract framework, a volume distribution of holes. Archive for Rational Mechanics and Analysis, 113(3):209–259, 1991. https://doi.org/10.1007/BF00375065
M. Boukrouche and R. El-Mir. On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions. Nonlinear Analysis: Real World Applications, 9(2):674–692, 2008. https://doi.org/10.1016/j.nonrwa.2006.12.012
H. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1):27–34, 1949. https://doi.org/10.1007/BF02120313
J. Casado-Díaz, M. Luna-Laynez and F.J. Suárez-Grau. A decomposition result for the pressure of a fluid in a thin domain and extensions to elasticity problems. SIAM Journal on Mathematical Analysis, 52(3):2201–2236, 2020. https://doi.org/10.1137/19M1257871
I.S. Ciuperca, E. Feireisl, M. Jai and A. Petrov. Transition to thermohydrodynamic lubrication problem. Quarterly of Applied Mathematics, 75(3):391–414, 2017. https://doi.org/10.1090/qam/1468
H. Darcy. Les Fontaines Publiques de la ville de Dijon. Dalmont, Paris, 1856.
R. El-Mir. Etude mathématique et analyse asymptotique de quelques problèmes de lubrification par des fluides incompressibles essentiellement non-Newtoniens avec des conditions de non adhérence aux bords. Hal Archive Ouverte, 2005.
T. Fratović and E. Marušić-Paloka. Nonlinear Brinkman-type law as a critical case in the polymer fluid filtration. Applicable Analysis, 95(3):562–583, 2016. https://doi.org/10.1080/00036811.2015.1022155
T. Gallouët and R. Herbin. Existence of a solution to a coupled elliptic system. Applied Mathematics Letters, 7(2):49–55, 1994. https://doi.org/10.1016/0893-9659(94)90030-2
A.B. Holland-Batt. Spiral separation, theory and simulations. Institution of mining and metallurgy transactions. Section C. Mineral Processing and Extractive Metallurgy, 98:56–60, 1989.
Y.-M. Hung and C.P. Tso. Temperature variations of forced convection in porous media for heating and cooling processes: internal heating effect of viscous dissipation. Transport in Porous Media, 75(3):319–332, 2008. https://doi.org/10.1007/s11242-008-9226-8
Y.-M. Hung and C.P. Tso. Effects of viscous dissipation on fully developed forced convection in porous media. International Communications in Heat and Mass Transfer, 36(6):597–603, 2009. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.008
B.K. Jha and J.O. Odengle. Unsteady Couette flow in a composite channel partially filled with porous material: a semi-analytical approach. Transport in Porous Media,107(1):219–234,2015.https://doi.org/10.1007/s11242-014-0434-0
T. Lévy. Fluid flow through an array of fixed particles. International Journal of Engineering Science, 21(1):11–23, 1983. https://doi.org/10.1016/00207225(83)90035-6
E. Magyari, D.A.S. Rees and B. Keller. Effect of viscous dissipation on the flow in fluid saturated porous media. In K. Vafai(Ed.), Handbook of Porous Media, pp. 373–406, Boca-Raton, 2005. Taylor & Francis.
E. Marušić-Paloka and I. Pažanin. Non-isothermal fluid flow through a thin pipe with cooling. Applicable Analysis, 88(4):495–515, 2009. https://doi.org/10.1080/00036810902889542
E. Marušić-Paloka, I. Pažanin and S. Marušić. Comparison between Darcy and Brinkman laws in a fracture. Applied Mathematics and Computation, 218(14):7538–7545, 2012. https://doi.org/10.1016/j.amc.2012.01.021
G. Panasenko and K. Pileckas. Multiscale analysis of viscous flows in thin tube structures. Birkha¨user Cham,2024. https://doi.org/10.1007/978-3-031-54630-3
I. Pažanin and M. Radulović. Effects of the viscous dissipation on the Darcy-Brinkman flow: Rigorous derivation of the higher-order asymptotic model. Applied Mathematics and Computation, 386:125479, 2020. https://doi.org/10.1016/j.amc.2020.125479
I. Pažanin and F.J. Suárez-Grau. Roughness-induced effects on the thermomicropolar fluid flow through a thin domain. Studies in Applied Mathematics, 151(2):716–751, 2023. https://doi.org/10.1111/sapm.12611
E. Sanchez-Palencia. On the asymptotics of the fluid flow past an array of fixed obstacles. International Journal of Engineering Science, 20(12):1291–1301, 1982. https://doi.org/10.1016/0020-7225(82)90055-6
A.Z. Szeri. Fluid film lubrication: theory and design. Cambridge University Press, Cambridge, 1998.
P. Tabeling. Introduction to microfluidics. Oxford University Press, 2023. https://doi.org/10.1093/oso/9780192845306.001.0001
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2026 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.