ISSN: 1392-6292/ eISSN: 1648-3510

2026

(] {Esis B MATHEMATICAL veume >
) Vilnius Setisinos m MODELLING and ANALYSIS Pages 172-193

https://doi.org/10.3846/mma.2026.24073

Analysis of the Darcy-Brinkman flow with viscous
dissipation and non-homogeneous thermal
boundary condition

lgor Pazanin®® and Francisco J. Sudrez-Grau® ™

@ Department of Mathematics, Faculty of Science, University of Zagreb,
Bijenicka 30, 10000 Zagreb, Croatia

b Departamento de Ecuaciones Diferenciales y Andlisis Numérico,
Facultad de Matemdticas, Universidad de Sevilla, 41012 Sevilla, Spain

Article History: Abstract. This study investigates the steady-state Darcy-Brinkman
B received May 31, 2025 flow within a thin, saturated porous domain, focusing on the effects
B revised September 19, 2025 of viscous dissipation and non-homogeneous boundary condition for

B accepted December 11, 2025 the temperature. Employing asymptotic techniques with respect
to the domain’s thickness, we rigorously derive the simplified cou-
pled model describing the fluid flow. The mathematical analysis
is based on deriving the sharp a priori estimates and proving the
compactness results of the rescaled functions. The resulting limit
model incorporates contributions of viscous dissipation and thermal
boundary conditions and thus could prove useful in the engineering
applications involving porous media.

Keywords: viscous dissipation; porous medium; non-homogeneous boundary conditions; asymptotic mo-
deling.

AMS Subject Classification: 35B40; 35Q35; 76S05.

™ Corresponding author. E-mail: grauQus.es

1 Introduction

The Darcy-Brinkman model [4] serves as a main framework for analyzing fluid
flow through porous media, particularly when accounting for both Darcy re-
sistance and viscous shear effects. This model extends Darcy’s law [7] by in-
corporating a viscous term, thereby enabling the study of flows in media with
moderate to high permeability where shear effects are non-negligible. The us-
age of the Brinkman’s extension of the Darcy law has been justified in numerous
works, see e.g., [2,15,18,22].

In thin-domain geometries where one dimension is significantly smaller than
the others, the flow behavior exhibits unique characteristics due to the pro-
nounced influence of boundary layers and the confinement of the flow. We
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refer the reader to monograph [19] and the references therein. Such configu-
rations naturally appear in engineering applications like microfluidic devices
and lubrication systems (see e.g. [23,24]). The analysis of non-isothermal flow
in these domains necessitates careful consideration of the interplay between
viscous forces and thermal effects, see e.g. [3,17,21].

Viscous dissipation, the process by which mechanical energy is converted
into thermal energy due to viscous forces, frequently plays an important role
in the thermal analysis of fluid flows. In porous media, this effect can lead
to significant temperature elevations, especially under conditions of high flow
velocities or low thermal conductivity. Many practical applications exhibit this
phenomenon, starting from geological processes (petroleum reserves, geother-
mal reservoirs) to industrial applications (catalytic reactors, porous journal
bearings). Studies have shown that viscous dissipation can substantially alter
temperature distributions, and we refer to [16] for the overview of the obtained
results.

The aim of the present paper is to analyze the Darcy-Brinkman system

given by
{ 2pteirdiv(Dlu]) — %u =Vp—f,

div(u) = 0, (L)

in a three-dimensional thin domain
F={z=("23) eER*xR: 2’ €w, 0<z3<ch(z))}, 0<e<l

Here u = (uq, ug, us) is the filter velocity, p is the pressure, f = (f1, fo, f3) is the
momentum source term, p is the dynamic viscosity coefficient, p.g denotes the
effective viscosity of the Brinkman term, while K stands for the permeability
of the porous medium.

To obtain the thermodynamic closure of the Darcy-Brinkman model, we
couple (1.1) with the heat equation

—kAT = &(u, p, e, K) .

Here T is the temperature, k is the thermal conductivity, whereas the viscous
dissipation function @ is defined by

I
B, o, K) = 2eful® + 2pc D[u] 2. (1.2)

The formula (1.2), proposed by Al-Hadhrami et al. [1], ensures the correct
asymptotic behavior for a wide range of permeability values K and, thus, has
been widely accepted when the Brinkman second-order term appears in (1.1);.
The first term in (1.2) results from the internal heating needed to extrude the
fluid through the porous medium (Darcy dissipation), while the second term
comes from the frictional heating due to dissipation.

The analytical investigations of the viscous dissipation effects in porous
media flow are rather sparse throughout the literature. One can mostly find
the analysis for 2D channel flows with only Darcy dissipation appearing in (1.2)
(K — 0), see e.g., [12,13,14]. A rigorous derivation of an asymptotic model for
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a 3D thin domain involving viscous dissipation term (1.2) has been provided
in [20]. The approach is based on the multiscale expansion technique and the
abstract result from [6] derived for the purpose of the thin-film flow through a
domain with no porous structure inside.

In the above mentioned works, a simple zero boundary condition for the
temperature has been imposed on the domain boundary. However, from the
point of view of the applications, it is natural to allow the variations of the
heat flux along the boundary. This leads to the presence of a non-homogeneous
boundary condition for the temperature further complicating the analysis. In
fact, such condition force us to change the modeling technique in order to
capture the resulting thermal gradients and their impact on the overall flow.
Following the approach from [5], the key idea is to the derive the sharp a priori
estimates using the decomposition of the pressure (see Section 3) and prove the
compactness results for the rescaled functions (see Section 4). Consequently,
we are in position to pass to the limit in the non-linear term on the right-hand
side of the temperature equation, previously ensuring the strong convergence of
the velocity. As a main result formulated in Theorem 1, we obtain the homoge-
nized model maintaining at the limit both the effects of viscous dissipation and
thermal boundary condition and that represents our main contribution. By
rigorously deriving a mathematical model that captures these complexities, we
provide insights into the thermal and flow behaviors in such systems, hopefully
contributing to the known engineering practice involving porous media.

2 Preliminaries and setting of the problem
As indicated in the Introduction, we consider a thin domain defined by
F={z=(2,23) ER*xR : 2’ cw, 0<x3 < h(z)},

where the bottom of the fluid domain w C R? has a Lipschitz boundary. The
small parameter of the problem is ¢ and he(a’) = eh (z') represents the real
gap between the two surfaces. h is a W1°° function such that
0 < Amin < h(2') < hmax for all (z/,0) € w.
The bottom, top and lateral boundaries of {2¢ are respectively given by
FO:{:L’ERS s € w, :cgz()}, Ff:{x€R3 s’ €w, :133:115(:5’)},
I; =002°\ (Io UIY).

We define the rescaled sets, after a dilatation of the vertical variable, as

N={zeR®: 2 cw, 0< 2z <h(z)}, F12{26R3 12 Ew, z;;zh(z’)},
Iy, =002\ (Iyuly).
We denote by C' a generic constant which can change from line to line.

In the sequel, we introduce the following notation. Let us consider a vector
function v = (v/,v3) with v/ = (v1,v2) defined in 2°. We have denoted by
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D:R?— ngm the symmetric part of the velocity gradient, that is
axl U1 %(axl v2 + axg'Ul) %(8373 v1 + 6931 '03)
D[V] = %(811112 + 89621)1) 812'1)2 %(8x3’l)2 + 81;21;3)
%((’9@31)1 + Oy, v3) %(8131@ + Op,v3) 05 U3

Moreover, for v = (V/,v3) a vector function and @ a scalar function, both
defined in {2, obtained from v and ¢ after a dilatation in the vertical variable,
respectively, we will use the following operators

AN =ApV+e 22V, Ap=Aup+e 202,
(st)ij = am_jgia 1= 172733 ] = 1723 (st)w = 5718%61'3 1= 172733
va& = (Vx'@ 5_1623&)t7 leE(V) = djvw,(G/) + 5_182353'

Moreover, we define D.[v] = D,/ [v] + e710,,[Vv] as follows

8$1 61 %(aﬂmi& + 81251) %(8371:53 + 5_182351)
DE [V] = %(87"152 + 6r261) 6.%252 %(87253 + 57162362) )
%(690153—#5‘182,351) %(&253—&—5‘162352) 8_18%53

where D,/ [v] and 0,,[V] are respectively defined by

O, V1 103,02 + Opyv1) 305,03
Dy [v] = | 3(0s,v2 + Ouyv1) Oz, V2 10z,0s |,
%chvg %3;521)3 0 (2.1)
0 0 30.,01
0z [v] = 0 0 10,00
10,01 30,02 Ox,03

We also define the following operators applied to v':

O, 01 1(0z,v2 + Ogyv1) 0
D,/ [v'] = %(6:611}2 + Oz,v1) O, V2 0 |,
0 0 0
0 0 10.,u 22)
0z, v'] = 0 0 1o.v
%@Svl %aZS’UQ 0

2.1 Setting of the problem

As explained in the Introduction, we assume that the fluid flow is governed
by the Darcy-Brinkman system coupled with the heat equation containing the
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viscous dissipation term, namely:

—2peq div(D[u®]) + KiuE +Vp® =£°  in (2,
T div(u®) =0 in 0°, (2.3)

—kAT® = Kim? + 2peD[u]2 in 0°.

Here, the superscript € is added to stress the dependence of the solution on the
small parameter. We impose the standard no-slip boundary condition for the
velocity, and allow the heat flux across the bottom of the fluid domain. In view
of that, the system (2.3) is endowed with the following boundary conditions:

w =0, T°=0 onlIfUIF, (2.4)
orTe
u® =0, k o = b° on Iy. (2.5)

In addition, we make the following assumptions on the given data:

— We assume the following scaling of the parameter K¢ with respect to the
small parameter ¢ (see [20]):

K¢ =¢’K, with K eR.

— We assume that the external source functions are independent of the
variable x5 and take the following scaling (see [3,21]):

f° =c72(f'(2'),0), with f' € L*(w)?.

— We assume the following scaling of the function b° with respect to the
small parameter ¢ (see [3]):

b =e'b with b= 0(1). (2.6)

Remark 1. Imposing non-homogeneous Neumann boundary condition (2.5)s is
physically relevant as it is directly motivated by the practical applications,
where the heat flux across the boundary naturally appears. Engineering appli-
cations cover a large number of devices such as heat exchangers, chemical re-
actors, particle separators in the mineral processing industry (see e.g., [11]),
etc. Based on the results from [3], one should expect that the magnitude of
the right-hand side function b° plays an important with regards to the effective
behavior of the flow. Choosing the scaling for b° as in (2.6) preserves the effects
of the heat exchange in the limit model, as explained in Section 4 (Remark 3).
Finally, it should be emphasized that the presented framework could be ex-
tended to a setting where the thermal boundary condition (2.5)3 is described
by the Robin boundary condition coming from the Newton cooling law (see

e.g., [17)).
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We consider the following functional framework on (2, where 1 < r < 400
with 1/r +1/r* = 1:

W e (929) = { € WHT(2°) = p =0 on IT U T},

Li(2°) = {1/) e L () - | paa= o}.

The weak formulation associated to (2.3)—(2.5) is obtained by multiplying (2.3);
by v € HE(82°)%, (23), by ¢ € HE(2°) and (23)3 by ¢ € Wi, ¢* =
q/(g—1) with ¢ € (1,3/2), respectively, and formally integrating these identities
over {2° to get the following variational form:

Find u® € Hj(2°)%, p° € L3(2°) and T° € Wy, . (2°), with ¢ € (1,3/2),
such that ‘

2,ueff/ D[u®] : D[v]dz + %5_2/ u®-vdz —/ p° div(v) dz

=¢? f v dx,
ne

/ u® - Vipda =0, (2.7)
k:/ VTe - V(dr = ﬂg—Z/ |uE|2Cd$+2NeH/ ID[u®][?¢ d
€ K ne e

+/ e b do,
Io

for every v € H3(2°)?, ¢ € H}(2°) and ¢ € WET 1 (29),

We observe that ¢* = 1/(¢ — 1) > 3, following [10], by Sobolev inequalities,
¢ € L>(£2°) and the right-hand side of (2.7)3 make sense.

The well-posedness of the described problem (2.3)—(2.5) can be established
by adapting the proof from [3, Theorem 1] and [8, Chapitre 2, Théoréme 2.2]
(see also [6, Theorem 2.4] ). Thus, based on these references, the system
(2.3)—(2.5) admits at least one solution (u®,p°,T¢) € HJ(02°)3 x L3(°) x
W;%qupf (£2°) with ¢ € (1,3/2). We remark that the proof of well-posedness of
(2.3)—(2.5) follows from [3, Theorem 1] (and also in [8, Chapitre 2, Théoreéme
2.2]) by changing the Tresca boundary condition on w for no-slip condition,
which is now simpler. Concerning [6, Theorem 2.4], the adaptation is to change
the non-homogeneous Dirichlet boundary condition on the bottom for the no-
slip condition.

In view of that, our goal in the present paper is to rigorously derive the
effective model describing the asymptotic behavior of the process governed by
(2.3)—(2.6). To accomplish that, we use the dilatation in the variable x3 given
by

23 = {E3/5 ) (28)

in order to have the functions defined in the open set independent of &, denoted
by 2, and on the rescaled boundaries I'; and I'y. Consequently, the system (2.3)
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becomes:
—2ptegrdive (D [0°]) + %6‘21}5 FVFE =1 in
div. (@) =0 in £, (2.9)
kAT = %—ﬂﬁfﬁ + 2o D [WF])2 in 12,
and the following boundary conditions:
=0, T°=0 onlyUIy,
=0, kV.T°-n=c"'b onIy. (2.10)
The unknown functions in the above system are given by u®(z’, z3) = u®(2/,ez3),

(2, 23) = p°(a',e23) and T (a', z3) = T°(x',e23) for ae. (2/,23) € £2. The
weak variational formulation of (2.9)-(2.10) now reads:

Find G € H{(R2)%, p° € LE(£2) and T° € W;%(£2) with ¢ € (1,3/2), such that

2ot /Da[fig] : D [V] dx'dzs + B2 /ﬁs -vda'z
Q K Q

— [ b° dive (V) da'dzg = /Q e 2.V da'dzs,

/ W V.o da'dzs = 0, (2.11)
2

e / kV.TE - V.da'dz = 1 / |6 |2¢ da’dzs
0 _ Ko -
+2pteme” [, [De[0°)[2C da’dzs + [, bCda’,

where V,{E and E are obtained respectively from v, and ¢ given in (2.7) by
using the change of variable (2.8). Here, the spaces are the following

W}JLQ(Q) :{7; € WI’T(Q) Y =0on I U},
LI(2) = L7(2): | dda'dz =0\,
s ={ver’ @ [ dardn-o}

Now, we aim to describe the asymptotic behavior of this new sequences u®, p*
and T°¢, as € tends to zero.

3 A priori estimates

3.1 Estimates for velocity and temperature

To derive the desired estimates, let us recall a well-known technical result (see,
e.g., [3]).

Lemma 1 [Poincaré’s and Korn’s inequalities]. For all ve W, (£2°)3 and
(NS W};ETUF; (£29), 1 < r < +o0, there hold the following inequalities

||VHLT(QE)3 <Cie HDVHLT(QE)3X3 ) ||l)V||Lr((ze)SXB <G HD[VH
4 Lr(£2¢) <Cie ||V

L7(£2¢)3%3

L7(£¢)3
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where Cy and Cy do not depend on . Moreover, for all v € Wol’r(ﬂ)?’ and

@Z € WETLJFZ(Q), 1 < r < 400, obtained from v and 1 from the change of
variable (2.8), there hold the following inequalities

VIl ()2 SCLe 1DVl o (ysns s DVl o (ysxs < Co [De[V|| L ggyoxs» (3-1)

[, ) <1294

. 3.2
Lr(£2)3 (8:2)

Next, we give the a priori estimates for velocity and temperature.

Proposition 1 [Estimates for velocity and temperature]|. Assume q €

(1,3/2) and let (0¢,T¢) be a solution of the dilated problem (2.9)-(2.10). Then,
there hold the following estimates

< < Ce1,(3.3)

18 2 0ys < Oy 1D0[| 2y < Ce 1, ||]D>E[1~15}|}L2(Q)3X3

HT Ce L, (3.4)

La(2)3 ~

<C, ijf

Li(R)

Remark 2. From the estimates given in Proposition 1, we also have the following
estimates for u®

HuEHLQ(Qs)S S CE%) ||Du6||L2(QE)3X3 S CE_%, S 08_%,

‘D[uE]HLQ(Qs)SXS

which will be useful to derive estimates for pressure.

Proof.  [Proof of Proposition 1] We divide the proof in two steps. In the first
step we deduce estimates for velocity (3.3) and in the second step we derive
estimates for temperature (3.4).

Step 1. Velocity estimates. Taking v = u° as test function in (2.11);, we
obtain

2,[,Leff/ D, [0.]|?dx'dzs + ﬁs_Q/ [a® |2da’ dzs :/ e -0 da'dzs,
Q K Q Q
where we have used that [, p. dive (1) = 0, because dive(u.) = 0 in 0F.

Using the Cauchy-Schwarz inequality, f' € L?(w)? and the Poincaré and Korn
inequalities (3.1), we get

/ e 2f U, dx
2

1 . 1 _ ~
Shl%axclf‘:_l HDsus||L2(Q)3x3 < hiaxCi1Coe ! H]D)s[ue

< hr%laxf‘:_2 ||fIHL2(w)2 ||1~1€||L2(.Q)3

]||L2(Q)3><3’
which leads to
Heff HDs[ﬁs]Hiz(n)sm + ﬂE_Q ||1~ls||iz(m3 = héaxclc?g_l HDE[GE]HLZ’(Q)“S ’

K
(3.5)
On the one hand, this implies that

| Dc[u. < Ce 1, (3.6)

]HLz(Q)sxs

Math. Model. Anal., 31(1):172-193, 2026.
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and so, again from the Poincaré and Korn inequalities (3.1), we deduce
D[ 2 (yoxs < Ce™, Bl 20y < C.
On the other hand, using (3.6) into (3.5), we also obtain

I
K
which also gives [[U||;2(g)s < C. This completes the velocity estimates.
Step 2. Temperature estimates. We follow [8, Lemme 2.4.2] in the case r = 2

and [3, Theorem 2] in the case r = 2 and b = 0, with some modifications. We
define ¢ : R — R by

1
e”? ||ﬁ€||2Lz(Q)3 < h2axC1Coe™2,

' |t] dr . 1
olt) = €m0 [ emtr =siant) |1~ ol |

with & > ~o. Then, it holds that ¢/ (t) = W.
We take ¢ = ¢(¢T°) as test function in (2.11)3. Then, taking into account that

Ve (eTe) 2

— dx’dzs,
(1 + |eTe])s+1t

/ kV(e2T7) - Vel da'dzs = / ¢k
2 (9

we get that (2.11)3 is rewritten as follows
j"ve 2 N 2 -
/ M dr'dzs SL/ ¢ |? da'dzs + Peft 52/ D [0°)|? da’dz3
2 (1+ |eTe))s+t KEE Jg k& fo)

1 /

By using estimates (3.3), we get

~e|2
ka/ |u®|* dz’dzs

'2“‘33 2/|]D> |2 da’ dzs

and then, we deduce

< Cl8°|Z2 (e < C,

SC;

G 1
< 052 ||]D) E ||L2(_Q)3 S C» ‘k‘f /wbd.’tl

TeN |2
/ WeETIE gy < (3.7)
o (1+ |eT=|)e+

Using Holder’s inequality with the exponents 2/¢q and 2/(2—q), for ¢ € (1,3/2),
we obtain

1 TE (&+1)%
/|v (eT%)|9da’ dz = /|v (7o) LT 2 gy
(14 [eT2|)E D3

—q

2
T<)|2 i - =
< / M dx'dzs (/ (14 |eTe) D=4 dx’dzg) .
2 (14 [eTe|)s+t o
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Now, we choose £ such that (£ + 1)g/(2 — q) < ¢* = 3¢/(3 — q), that is £ <
(3—2¢)/(3 —q). Using (3.7), we get

2—gq

[ |IVe(eT?)|9da'dz < C (fQ(l + |gf€|)q*dx/dzg) ?
*_ _ . 2—gq (38)
< 02 (|Q + (fg |5Ta|q*dx’dz?,) ? ) .

To obtain the estimate for V.(¢T¢) in L7(£2)3, it remains to estimate £T° in
L7 (£2). Thus, using the Poincaré-Sobolev inequality and (3.8), there exists a
constant C, > 0 independent of € such that

Vs 2y (eT) (eT*)

(f |eTe|" d;v’d23) e
“ - L)

2—g
<2 <|(z|22q“ + (fo leTo)" da'dzg) )

La(£2)?

(3.9)
On the other hand, for all @ > 0, ¢; > 0, co > 0 and 0 < s < ¢, the following
implication holds

If ' < ¢4 coa® then a < max{l,(c; +c)/ =9},

Hence, taking in (3.9) the following choices for a, ¢, co, s, t:

~ SHEED) CLESIEE)
az/~ |eTe|9 da'dzs, ¢ = Cy 9 101 E , =c2" <
!5
1 2— 1
t=— s = q’ :67
q* 2q t—s

we deduce that the integral term on the right-hand side of (3.9) satisfies

~ o« a* q —q 6
/ eT%|9 da'dzs < A = max{1,8), B = (c 9t (1215 +1))".
2

2—gq

Then, it holds (fQ |leTe|e" d.’L’le?,) < max{1, B “1, so, from (3.8), we have

/ IV (eT9)|9 da'dzs < C,
2

which gives (3.4)2. By the Poincaré inequality (3.2), we deduce (3.4); and so,
the proof is finished. 0O
3.2 Estimates for pressure

Let us first give a more accurate estimate for pressure p°. For this, we need
to recall a version of the decomposition result for p° whose proof can be found
in [5].

Math. Model. Anal., 31(1):172-193, 2026.
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Proposition 2. The following decomposition for p* € L3(£2¢) holds
p° =5 + i, (3.10)
where p§ € HY(T?), which is independent of x3, and p; € L*(£2¢). Moreover,
the following estimates hold
3 £ £ £
€2 [ID6]l g1 o) F 1P 2200y < C VP r-1(00ye 5
that is

c _3 & £
”pO”Hl(w) <Ce2 ||vp€||H—1(_O€)3a ||p1||L2(Q€) <C|Vp ||H—1(Qs)3~ (3.11)
Proof. This result follows from [5, Corollary 3.4] by assuming
F =wx(ev), Ve>0,

with w C R2,9 C R connected Lipschitz open sets and exponent q = 2, see [5,
Remark 3.1]. In the present case, ¥ = (0, k(")) with h € W1 as we set in
Section 2. Thus, £2° satisfies the abstract conditions (3.3)—(3.5) given in [5],
and so, [5, Corollary 3.4] can be applied. O

We denote by p5 the rescaled function associated with p! defined by p5(z/, 23)
= pf(a’,ez3) for a.e. (2/,z3) € £2. As a consequence, we have the following
result:

Corollary 1. The pressures pg, pf and pj satisfy the following estimates

_1 _
2 ille gy S Ce™ %, 1Bl peqny < Ce (3.12)

196/l 71 oy < C™
Proof. In view of (3.11), to derive (3.12) we just need to obtain the estimate
for Vp® given by )

||VPE||H*1(QE)3 < Cemz. (3.13)

To do this, we consider v € H}(£2¢)3, and taking into account the variational
formulation (2.7)1, we get

(Vp®,v) :—Q,ueff/]D)[uE} : D[v] dw—%e_Q/ u®-v dat+/ e 2f v dr. (3.14)
where (-, -} denotes the duality product between H~1(£2¢)3 and H}(£2¢)3. Esti-
mating the terms on the right-hand side of (3.14) using Lemma 1 and Remark 2,
we get

[24tet o Dluc] : DIV da| < C[IPL|| s gyepsns 1DV aeyons
< C‘S_%HVHH(}(QEP?
|72 fgout - vda| < Cem? fucllgaqo, s IVlle(o,s
< C||Du€||L2(Q€)3><3 HDVHL2(Q€)3X3
< Ce: ||V||H5(Qs)3,
o728V da| < CeHDV] gm0 < CF [Vl pgg ey
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which together with (3.14) gives
_1
|<vps7v>| <Ce™2 Hv”Hé(Qa):} s Vv e Hé(95)3

This gives the desired estimate (3.13), completing the proof. O

4 Convergence results and limit problem

For 1 < r < +00, let us introduce the following sets:

Vi={vel(R2) : O,u; e L"(Q)}, VL o={veV.(2) : v=00n6}.

Proposition 3 [Compactness results for rescaled functions]. For a sub-
sequence of € still denoted by €, we have the following convergence results:

o There exists u* = (uy,us) € (V2 popn)?s such that

u; — ur in Vz237FOUI“1’ 1=1,2, (4
U 0 in L2(92), (.

€, U5 — 0 in L3(R), i,j=1,2, (4
div, (foh(x/) u*(z) ng,) =0 inw, (4

( PO G0 (2) d23) ‘n=0 ondw. (4.5)

e There exists a function p € L3(w) N H(w), independent of z3, such that

e2p§ — p* in HY(w). (4.6)

o There exists T* € VI . such that
3,41

T8 =T in V. . (4.7)
€8, T° — 0 in LY(2), i=1,2. (4.8)

Proof. We start by proving the convergence for the velocity u®, which is
classical. From estimates (3.3), we deduce that there exists u = (u*,u3) €
(V2 rory)? with @ =0 on Iy U I, such that

u—u in (V2 o) (4.9)
From (4.9), we also have that
div, (0°) — div, (W) in HY(0,1; H '(w)),

which implies (4.3). Then, by using div.(u®) = 0in {2, we deduce that ¢ ~19,,u§
is bounded in L2(0,7T; H~(w)). Using then that u§ = 0 on I, we deduce that
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e~ 145 is bounded in H'(0,1; H !(w)), and therefore, together with (4.9), we
deduce that 4§ tends to a5 = 0. This completes the proof of (4.1) and (4.2).
Next, by taking 1 € D(w) in (2.11)2, we deduce

/ (W) Vo tp(z') da'dzs = 0,
2

and passing to the limit by using (4.1), we deduce (4.4)-(4.5).

Convergences and free-divergence condition given in this proposition are
obtained directly from the estimates given in Proposition 1 for velocity and
temperature, see for instance [3, Theorem 3].

Concerning the pressure, from estimates of p§ given in (3.12);, we get the
convergence (4.6). Since p® has mean value zero, from the decomposition of
the pressure, we have

0= / p°da'dzs = h(:c’)/pg(x’)dx’—i—/ p; dx'dzs.
2 w 2
Taking into account the convergence of £2p§ to p* given in (4.6) and that

/ e2p5 da'dzz| < Ce — 0, (4.10)
17}

we get h(z') [ p* da’ = 0, and so, by the assumptions of h(2’), p has null mean
value in w.

Finally, convergences (4.7)—(4.8) are obtained from estimates (3.4) with si-
milar arguments of the proof as for the velocity convergences given above. 0O

Next, by using previous convergences, we derive the limit coupled model.

Theorem 1 [Limit model]. The limit functions u*, p*, T* given in Proposi-
tion 3 satisfy
—peg02, 0 + £0* = f'(2) — Vo p*(2!)  in L2,

divys ( e e dzg) -0 in®,

ROLT* = B2 4 gl W2 in 2 (411)
u* = O on F() U Fl,
T* =0 on Fla

—kd,,T*=b on I.

Proof. We divide the proof in four steps. In the first step, we pass to the limit
in the equation of velocity and, in the second and third ones, we obtain strong
convergence of velocity. Finally, in the fourth step, we pass to the limit in the
equation of temperature.

Step 1. To prove (4.11);, according to Proposition 3, we consider (2.11);
with v replaced by v = (¢2v/,0) € D(£2)3. This gives the following variational
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formulation:
2@63/ £2D.[u] : D.[V'] dx'd23+£/ u® - v da'z3
Q K Jo
- / e2p° divy (V') do'dzs = / £V dx'dzs. (4.12)
o) 2

Below, let us pass to the limit when ¢ tends to zero in each term of (4.12):

e First term on the left-hand side of (4.12). From the convergence (4.3),
taking into account definitions (2.1)—(2.2), and since D.[u®] : D.[v/] =
D.[(u®)] : D.[v'], we get

2,ueﬁr/ 2D [0°] : D [V'] da’dzs
Q

= 2yt [ D (8 Do) et 2 0,5 0,7 o'
= ZMQH/ 623 : ]dl‘/dz;)) + O..
e Second term on the left-hand side of (4.12). From the convergence (4.1),
we get
o ~e =1 3.1 H ~x = g/
— | - Vvda'zz=— [ u-vdzr'zz+ O..
K Ja K Jq :

e Third term on the left-hand side of (4.12). From the decomposition of
the pressure (3.10), convergence (4.6) and (4.10), we have

p° divy (V') dz'dzs

KT

= [ &%p§(z') divy (V') da'dzz + / e2p5 divy (V') da'dzs

(9]
= f P (2) divy (V) da’dzs + O..
(9]

Therefore, passing to the limit in (4.12) as € — 0, by previous convergences,
we deduce the following limit variational formulation

Q,ueg/ 0.,[0"] : 0., [V da'dz3 + 7/ V' dx 23

(4.13)
/ (') divy (V') da'dzs = / - v da'dzs,
0

which, by density, holds for every v/ € H}OU r,- Taking into account that
~ 1, - .
0., 0] : 0.,V = §8z3u* -0,V (4.14)

then (4.13) is equivalent to (4.11)1 4
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Step 2. We prove the following property

e—0

lim (” [0°|? da'dzg + 2peme® / |]D>E[ii€]|2dx’d23)

K o @ (4.15)

= ﬁ/ |ﬁ*|2dx'd23+2ueg/ |623[ﬁ*]|2d$/d2’3.
K Jo P

To prove this, we take U as test function in (2.11);. Taking into account that
the pressure term vanish because dive(u®) = 0 in {2, passing to the limit in the
right-hand side of (2.11);, we deduce

lim (M/|ﬁ52dm'd23 +2Meff€2/ |]D)€[ﬁ5]|2dx’d23> :/ f-u* dx'dzs. (4.16)
KJg 2 0

e—0

Now, we take u* as test function in (4.13). Taking into account that p* does

not depend on z3 and the divergence condition div,( foh(x ) u*dz3) = 0 in w,
we have

2,ueﬂr/ 0., [0*]|? da’dzs + ﬂ/ [u*|? da'z3 = / f - u*da'dzs.
Q K Ja o)
This together with (4.16), implies (4.15).
Step 3. We prove strong convergences
a® — (U*,0) in L*(N)3, eD.[u°] — 0.,[u*] in L?(02)3*3, (4.17)
To prove (4.17), it is enough to prove
E. = 2#63/ leDe[0°] — 0., [ﬁ*]|2dx’d,23 + %/ u® — (u, 0)|2 da'dzs
Q Q
tends to zero. Developing the expression of E., we have
B~ / (e [5°] 2 da’ s + 2ptes / 0., [6"] 2da dzs
Q Q
— 4/J,eff/ eD.[U°] : O, [0*]|da'dz3
0
4 H/ G [2da’ dzs + ﬁ/ G2 dar'dzg — zﬁ/ (@Y - & da'dzs.
kJa kJa kJa

By using property (4.15) and convergences (4.1)-(4.3), we easily deduce E.—0.
Step 4. To prove (4.11)3, we consider (2.11)3 with ¢ = ¢ (2')¢(z3) with

¢ € D(w) and ¢ € C>°([0,1]) with ¢ = 0 on I. We pass to the limit in every
term:

52/ EV.T¢ - V.Cda'dzs :ﬂ/ \ﬁ5|25da¢’d23 + ZMQHEQ/ |De [ﬁ5]|25dx’dz3
Q K /g Q

+ / b¢da'. (4.18)
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e First and second terms in the left-hand side of (4.18). By using conver-
gences (4.7) and (4.8), we get

£ / kY. T - V.( da'dzs
7
= EQ/ka/TE Vao(a!) ¢(z3) da’ dzs+ /k@ZSTE 0.,0(23) ¥(x') da'dzs

7 7
= / kD, T* 0,,¢ da'dzs + Ok.
@

e First term in the right-hand side of (4.18). From the strong convergence
(4.17), we deduce

%/ﬂ|ﬁ5|25dx’dz3: %/ﬂ|ﬁ*\26d:¢’d2«3+o€.

e Second term in the right-hand side of (4.18). From the strong convergence
(4.17), we deduce

Qtesie? / D [0°]|2C da'dzs =  2pte / leD.[0°]2C da’dzs
2

= 2est /7 0., [0*] ¢ da’dzs + O...
(]

Therefore, passing to the limit in (4.18) as € — 0, by previous convergences,
we deduce the following limit variational formulation

/ k., T* 0.,C da’dzs

22

- ﬁ/ |ﬁ*|22dx'dz3+2ueﬂ/ |823[ﬁ*]\25d:1:’dz?,+/bgdx’,
K (9} (9] w

which by density holds for ever Z € VZZ’, r,» and so, by taking into account
(4.14), it is equivalent to (4.11)35¢6. O

Remark 3. We observe that if we consider the scaling for b. of order smaller
than O(s71) in (2.6), then, we derive thermal homogeneous boundary condition

0., T* =0o0n Iy in (4.11).

Finally, by solving the limit model obtained in Theorem 1, we derive the ex-
pressions for u*, p* and T*.

Corollary 2. We have the following expressions for u*, p* and T*:

o Velocity u* € V2 p, p, is given by

(2, 2) = % (A1@)eM= + A5(a)e™™= +1) (£ (2') — Vb (),

(4.19)
where M =, / Kﬁe“ and
1— —Mh(z) 1— Mh(z")
Af(2)) = ¢ A () ¢ (4.20)

T eMh(a') _ g—Mh(a’)’
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e Pressure p* € L3(w) N H'(w) is the unique solution of the Reynolds
equation:

K/2 th(x') _eth(ac/) -9

divx(u(M eMh(z') _o—Mh(z') _h(ﬂfl))(vx'ﬁ*—f/)):() (4.21)

in w, with the following boundary condition on dw

K/ 2 th(m’) _ eth(m') ) , o ,
</j, <M th(x,) — e—Mh(x/) — h(l’ )> (Vx/p —f )) -n=0.

e The temperature T* € VZZ” r, is given by

T 25) = — 1 (Vi 25) = Vil b)) I (0Y) = Vo (0P

kp
Y CIVE
R (Vi (@ 20) = V3 (' h(@)) ) I/ (@) = V" (o)

b b
—5(zs - h(a")|f' () = Vaup* ()%,
(4.22)
with
Vi, 28) = i (AT@)? (475 1) + A3(ay? (2 —1) )
b (A1 = 1) + A5 (M5 1)
+ % + Aj (') ;(f)) 25— ﬁ(m(m’f ~ A35(2)?)
- %(Af(w') — A3(2"))zs, (4.23)
Vi (2, 23) :% (A%)? (62Mh(:v’) _ 62M23> —(AL)? (672Mh(:p’) _ 62MZ3)>
+ AT A5 (h(2) — 23)% (4.24)

Proof. Expression for u* is the solution of

—Hend? W+ L0 = £(a) — Vop'(a)) i 92
u* =0 on FO U F17

which is a second-order linear differential equation with respect to the variable
z3 with homogeneous boundary conditions. The computations to derive (4.19)—
(4.20) can be found in [20, Equations (3.3)—(3.6)], so we omit it.

According to the expression of u* and divergence condition (4.11)s, after
computing foh(x ) §* dzs and according to the expressions of A}(z’) and Aj(z'),
we deduce that p* is the unique solution of (4.21).
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The temperature is solution of Equation (4.11)3 56 given by

ik B~ Heft ~x :
333T = —K—k|u |2 — . |8~Z3u | in £,
T*=0 on I,

623T* = —% on Fo,

which is a second-order linear differential equation with respect to z3 with
Robin conditions. The solution is given by

Tx I = T~*2 Heff zB/T ~%2
T (2 = dsdr — 0, dsd
o= |, ) WPasar =2 [ [0 pasas

+ Bi(2')23 + Ba(2'),

with By(z') = —2 and

bh(z') o e peg [ T
B / — * |2 € *|2 .
2 (2" . + —k/o /0 [a*|* dsdr + 3 /0 /0 |0, u*|*ds dr

Let us compute [;° [ [u*|?dsdr. We observe that

T 2
/ (A{(m’)eMs + Ay(z)e M5 4 1) ds
0
1 * T * - T * *
— o7 (A1) = (45)%72M7) 4 (14 24745) 7

2 (A1eMT - Aze M) — o (4D — (43)7) - o (A7 - 43)

and so, Vi*(2/,z3) = [° [y (Af(2")eMs + Aj(a)e M5 + 1)2 dsdr is given by
(4.23). This implies that

h(w/) i ~x|2 K2 ! / 2 AYPA
/ / P dsdr = V(@) @) = Vo (@)
z3 0

Finally, let us compute [;° [ [0.,u*|* dsdr. We observe that

KM
0:yut(a 25) = = = (AL 4 A3 M) (£/(0') = Verp”),

and, according to previous computations, we deduce
h(z') T K2M2
/ /0 |0, u*|* dsdr = 2 — V5 ()| (') = Varp* ],
z3

with V¥ (2/, z3) = f;;(x,) Jo (Af(a")eMs + Ag(ar:’)e_Ms)2 ds dr given by (4.24).

From the above computations, we get (4.22).
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5 Concluding remarks

This study deals with the limit analysis of steady-state Darcy-Brinkman in
a thin domain with a one-way coupling via a steady-state heat equation with
particular focus on viscous dissipation. Using asymptotic methods with respect
to the domain thickness, we propose a simplified model that accounts for both
mechanical and thermal effects. The main obstacle is the nonlinear coupling via
the viscous dissipation, which necessitates strong convergence for the velocity
field and its derivatives. It should be emphasized that the effective model has
been rigorously justified by proving the convergence results and can be used as
an useful check for numerical simulations.

We remark that we can consider the Darcy-Lapwood-Brinkman equation
which takes into account the viscous shear and inertia effects by incorporating
the convective inertial term ﬁ(uE -V)u® in (2.3);, where p is the fluid density
and ¢ is the porosity. Namely, it reads

e div(D[uf]) + v + VpF = £° + %(ue V),

K. (5.1)
div(u®) = 0.

The corresponding thermodynamic closure of the problem (5.1) is obtained by

considering the heat equation

CRAT® = (uF - V)T + Ki|us|2 + 2o | D[uf] |2, (5.2)
1>

where we have introduced the convective term (u® - V)T* in (2.3)3 as well.
We remark that, at main order, due to the a priori estimates in thin domain,
the convective terms would vanish, and to take into account them a further
asymptotic development (lower order terms) is necessary. We believe that the
analysis presented here can be extended to study the problem (5.1)—(5.2) and
this will be the subject of our future work.

We also remark that other boundary conditions could be considered. For
example, following [3], we can consider the following boundary conditions for
velocity. Consider g = (g1, g2, g3) such that

/ g -ndo =0,
ane

such that
e No-slip condition: u* =g =0on I}.
e The velocity is known and parallel to the w-plane: u®* = g = 0 with
g3 =0on I}.

e There is a no flux condition across w so that uj = g3 = 0. The tangential
velocity on w is unknown and satisfies the Tresca friction law with a
friction coefficient k°:

lof| < ks =uf=s on w
|of| = k¥ = X > 0 such that u§ = s — Ao} ’
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We believe that our study can be adapted to the case of a flow of a non-
Newtonian fluid through a thin three-dimensional domain given by the follow-
ing system
—2pter div(|Du®][""*D[u]) + Vp© = £°,
div(u®) =0, (5.3)
~kRAT® = 210D,

with boundary conditions (2.4)-(2.5). Also, the z~u® in (2.3); could be re-
placed in the non-Newtonian setting by a drag force function in the spirit of [9],
that is, a function G : R® — R3 continuous, strictly monotone, satisfying an
homogeneity condition G(AE) = [A["72AG(€), A € R, and the following condi-
tion

mlel~ < 6(6)] < Ml

for some constants m, M > 0. Including this term in (5.3); and the corre-
sponding one in the viscous dissipation @ in (5.3)3, we would consider the
generalization of the present study to the non-Newtonian setting, which will
be a subject of our future work.
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