On shifts of periodic zeta-function in short intervals
DOI: https://doi.org/10.3846/mma.2026.24070Abstract
The periodic zeta-function $\zeta(s; a)$, $s = \sigma + it$, $a = \{a_m \in \mathbb{C} : m \in \mathbb{N}\}$, in the half-plane $\sigma > 1$ is defined by Dirichlet series with periodic coefficients $a_m$, and has the meromorphic continuation to the whole complex plane. The function $\zeta(s; a)$ is a generalization of the Riemann zeta-function and Dirichlet $L$-functions. In the paper, using only the periodicity of the sequence $a$, we obtain that the shifts $\zeta(s + i\tau; a)$, $\tau \in \mathbb{R}$, approximate a certain class of analytic functions, defined in the strip $\{s \in \mathbb{C} : 1/2 < \sigma < 1\}$. For $T^{23/70} \leqslant H \leqslant T^{1/2}$, the set of such shifts has a positive lower density in the interval $[T, T + H]$, $T \to \infty$. The case of positive density is also discussed. For the proof, the mean square estimate in short intervals for the Hurwitz zeta-function, and probabilistic limit theorems are applied.
Keywords:
approximation of analytic functions, Dirichlet series, Hurwitz zeta-function, periodic zeta-function, weak convergenceHow to Cite
Share
License
Copyright (c) 2026 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
J. Andersson, R. Garunkštis, R. Kačinskaitė, K. Nakai, Ł . Pańkowski, A. Sourmelidis, R. Steuding, J. Steuding and S. Wananiyakul. Notes on universality in short intervals and exponential shifts. Lith. Math. J., 64(2):125–137, 2024. https://doi.org/10.1007/s10986-024-09631-5
B. Bagchi. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.
B. Bagchi. A joint universality theorem for Dirichlet L-functions. Math. Z., 181(3):319–334, 1982. https://doi.org/10.1007/BF01161980
P. Billingsley. Convergence of Probability Measures. Willey, New York, 1968.
J. Bourgain and N. Watt. Decoupling for perturbed cones and the mean square of |ζ(1/2 + it)|. Int. Math. Res. Not., 2018(17):5219–5296, 2018. https://doi.org/10.1093/imrn/rnx009
S.M. Gonek. Analytic Properties of Zeta and L-Functions. PhD Thesis, University of Michigan, Ann Arbor, 1979.
A. Ivič. The Riemann Zeta-Function. The theory of the Riemann zeta-function with applications, John Wiley & Sons, Inc., New York, 1985.
R. Kačinskaitė. On discrete universality in the Selberg–Steuding class. Sib. Math. J., 63(2):277–285, 2022. https://doi.org/10.1134/S0037446622020069
R. Kačinskaitė and B. Kazlauskaitė. Two results related to the universality of zeta-functions with periodic coefficients. Results Math., 73(3):article. no. 95, 2018. https://doi.org/10.1007/s00025-018-0856-z
R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. Studia Sci. Math. Hungar., 48(2):257–279, 2011. https://doi.org/10.1556/sscmath.48.2011.2.1162
R. Kačinskaitė and K. Matsumoto. A survey of the theory of mixed joint universality for zeta-functions. In K. Kurşungöz and A. Zeytin(Eds.), Number Theory: Proceedings of the Journées Arithmétiques, 2019, XXXI, Istanbul University, pp. 47–60, Berlin, Boston, 2022. De Gruyter. https://doi.org/10.1515/9783110761115-004
R. Kačinskaitė, K. Matsumoto and Ł. Pańkowski. On mixed joint discrete universality for a class of zeta-functions: one more case. Taiwanese J. Math., 27(2):221– 236, 2023. https://doi.org/10.11650/tjm/220804
R. Kačinskaitė and B. Togobickij. A modification of the mixed joint universality theorem for a class of zeta functions. Mathematics, 10(19):article no. 3536, 2022. https://doi.org/10.3390/math10193536
J. Kaczorowski. Some remarks on the universality of periodic L-functions. In R. Steuding and J. Steuding(Eds.), New directions in value-distribution theory of zeta and L-functions, pp. 113–120, Aachen, 2009. Shaker Verlag.
A.A. Karatsuba and S.M. Voronin. The Riemann Zeta-Function. Walter de Gruyter, Berlin, 1992. https://doi.org/10.1515/9783110886146
A. Laurinčikas. Universality of the Riemann zeta-function in short intervals. J. Number Theory, 204:279–295, 2019. https://doi.org/10.1016/j.jnt.2019.04.006
A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. https://doi.org/10.1007/978-94-017-6401-8
A. Laurinčikas and K. Matsumoto. The universality of zeta-functions attached to certain cusp forms. Acta Arith., 98(4):345–359, 2001. https://doi.org/10.4064/aa98-4-2
A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of the periodic zeta-function. Math. Notes, 80(3–4):532–538, 2006. https://doi.org/10.1007/s11006-006-0171-y
A. Laurinčikas and D. Šiaučiūnas. The mean square of the Hurwitz zeta-function in short intervals. Axioms, 13(8):article no. 510, 2024. https://doi.org/10.3390/axioms13080510
Y. Lee and Ł. Pańkowski. Universality of the zeta function in short intervals. Ramanujan J., 68(1):article no. 5, 2025. https://doi.org/10.1007/s11139-025-01144-0
D. Leitmann and D. Wolke. Periodische und multiplikative zahlentheoretische Funktionen. Monatsh. Math., 81:279–289, 1976. https://doi.org/10.1007/BF01387755
R. Macaitienė, M. Stoncelis and D. Šiaučiūnas. A weighted discrete universality theorem for periodic zeta-functions. In A. Dubickas, A. Laurinčikas, E. Manstavičius and G. Stepanauskas(Eds.), Anal. Probab. Methods Number Theory, Proc. 6th Int. Conf., Palanga, Lithuania, 11–17 September 2016, pp. 97–107, Vilnius, 2017. VU Leidykla.
K. Matsumoto. A survey on the theory of universality for zeta and L-functions. In M. Kaneko, S. Kanemitsu and J. Liu(Eds.), Number Theory: Plowing and Starring Through High Wawe Forms, Proc. 7th China-Japan Semin. (Fukuoka 2013), volume 11 of Number Theory and Appl., pp. 95–144, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2015. World Scientific Publishing Co. https://doi.org/10.1142/9789814644938_0004
Ł. Pańkowski. Joint universality for dependent L-functions. Ramanujan J., 45(1):181–195, 2018. https://doi.org/10.1007/s11139-017-9886-5
K. Prachar. Distribution of Prime Numbers. Mir, Moscow, 1967. (in Russian)
J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-44822-8
M. Tekorė. Universality of Periodic Zeta-Functions with Multiplicative Coefficients. PhD Thesis, Vilnius University, Vilnius, 2024. https://doi.org/10.15388/vu.thesis.709
S.M. Voronin. The functional independence of Dirichlet L-functions. Acta Arith., 27:493–503, 1975. https://doi.org/10.4064/aa-27-1-493-503 (in Russian)
S.M. Voronin. Theorem on the “universality” of the Riemann zetafunction. Izv. Akad. Nauk SSSR, Ser. Matem., 39:475–486, 1975.
https://doi.org/10.1070/IM1975v009n03ABEH001485 (in Russian)
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2026 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.