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1 Introduction

Denote by C the set of all complex numbers, by s = o + it a complex variable,
and let a = {a,, € C:m € N}. The series of the form

[eS)
m=1

are called (ordinary) Dirichlet series. A convergence region of (1.1) is a half-
plane o > .. This means that there is a number o, € R such that the series
(1.1) is convergent for o > o, and divergent for o < o.. The convergence on
the line ¢ = o, must be considered separately. Notice that there are Dirichlet
series convergent for all s, and also there exist series divergent for all s.

a,
s

(1.1)

S
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In what follows, we will deal with Dirichlet series, therefore, we recall some
classical facts of them. Denote by f(s) the sum of the series (1.1) for o > o,.
Let sg = oo + itg, 09 > 0.. Then the series (1.1) is uniformly convergent in
any closed region lying in the half-plane ¢ > (. Hence, the function f(s) is
analytic in the half-plane o > o..

Almost periodic analytic functions are represented by Dirichlet series. This
class is not wide. However, Dirichlet series are widely used in analytic number
theory because they are generating functions of arithmetic sequences, and by
Dirichlet series very important zeta- and L-functions are defined. Among them,
the famous Riemann zeta-function ((s), for o > 1, given by

W)=

m=1

and Dirichlet L-functions L(s, x) with Dirichlet characters x defined by

Also, more general the so-called periodic zeta-functions are defined by Di-
richlet series. Let a = {a,, : m € N} be a periodic sequence of complex numbers
with minimal period ¢ € N. The periodic zeta-function ((s;a), for o > 1, is
defined by

((s;0) = 3 iy
s mz::lm

Since the periodic sequence is bounded, the latter series is absolutely convergent
for o > 1. Thus, the function {(s;a) is analytic in the half-plane ¢ > 1. For
analytic continuation of ((s;a) to the region o < 1, the Hurwitz zeta-function
is applied. Let 0 < a < 1 be a fixed parameter. The Hurwitz zeta-function
((s, @), for o > 1, is given by the Dirichlet series

1
((s,) = Z CE

m=0

It is well known, see, for example, [25], that the function ((s,«), similarly
the functions ((s) and L(s, x), has analytic continuation to the whole complex
plane, except for the point s = 1 which is a simple pole with residue 1. The
periodicity of a, for o > 1, implies the equality

C(s:0) = q—izalc (s.1/). (12)
=1

Therefore, by the properties of (s, «), the function ((s;a) is analytic in the
entire complex plane, except for the point s = 1 which is a simple pole with
residue

q
def 1
r=- aj

=1
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provided r # 0. If » = 0, then the function {(s;a) is entire.

In this paper, we are interested in approximation of some classes of analytic
functions by shifts ((s + i7;a), 7 € R. Recall that the first result of such a
type was obtained for the functions {(s) and L(s, x) in [29], and is called their
universality. We observe that Dirichlet L-functions lie in the class of periodic
zeta-functions with completely multiplicative coefficients. Their universality
was widely studied in works by S.M. Voronin [28], S.M. Gonek [6], B. Bagchi [3],
L. Parikowski [?] and others. Moreover, a lot of universality results were
obtained for zeta-functions with more general sequences {a,,} including the
Selberg-Steuding class [8,13,26], Matsumoto zeta-functions [12], zeta-functions
of cusp forms [18], etc. For results and a wider bibliography, we recommend
the excellent survey [24] prepared by Kohji Matsumoto, see also [11].

For the statements of results, we use some specific notation. Let D = {s €
C:1/2 < o <1}, K denote the class of compact subsets of D with connected
complements, H(K) with K € I be the class of continuous functions on K that
are analytic inside of K, and Hy(K) the subclass of H(K) of non-vanishing on
K functions. Moreover, let

mT(...):%meas{Te[O,T]:...},

where measA denotes the Lebesgue measure of a measurable set A C R, and in
place of dots a condition satisfying by 7 is to be written. The first universality
theorem for the function ((s;a) with non-multiplicative a has been proven
in [26], see also [2]. Suppose that ¢ > 2, a,, is not a multiple of Dirichlet
character modulo ¢, and a,, = 0 for (m,q) > 1. Let K € K, g(s) € H(K).
Then, for every € > 0,

liminfmT<sup lg(s) — ((s+ iT;a)] <€> > 0. (1.3)
T—o00 sEK
As it follows from [22], in the above case the sequence a is not a multiplicative.
The universality of ((s;a) with prime period ¢ has been discussed in [14]. The
first universality theorem for {(s; a) with a multiplicative sequence a (G, m, =
Gy A, for all (mp,mg) = 1) has been obtained in [19]. Let K € K and
g(s) € Ho(K). Then, for every € > 0, inequality (1.3) holds. Later many
people continued these studies in the field, see, for example, [9,10,27].
Approximation of analytic functions by discrete shifts (s + tkh;a) with
h > 0 and £k € Ny = NU {0} is possible as well. For example, assuming
the multiplicativity of a and linear independence over Q of the set (possible,
multiset) {(hlogp : p € P),2n}, P is the set of all prime numbers, it was
obtained [23], that for every K € K, g(s) € Hyo(K) and € > 0, the set

{O <k < N:suplg(s) — (s +ikh;a)| < s}
seK

has a positive lower density.
In the above cited works, the density of the set of approximating shifts is
considered in interval [0, T'] of length T'. For consideration approximating values
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of 7 (or k), it is more convenient to deal with intervals as short as possible. In
analytic number theory, the distribution of some objects, for example, prime
numbers, zeros of the Riemann zeta-function, etc., see [7,15], are studied in the
so-called short intervals, i. e., in intervals [T, T + H] with H = o(T') as T — oc.
Results obtained in short intervals contain more information on investigated
things.

Our aim is to show that the periodic zeta-functions have good properties
with respect to approximation of analytic functions by shifts (s + i7;a) in
short intervals.

Let

1
mr(...) = Emeas{re [T, T+HJ;...},

and let H(D) stand for the space of analytic functions on D endowed with the
topology of uniform convergence on compacta. In this topology, a sequence
{fn(s)} C H(D) converges to f(s) € H(D) as n — oo if, for every compact set
K cD,

lim sup | f(s) — £(s)] = 0.

n—oo scK

Theorem 1. Suppose that T?*/0 < H < T2, Then there exists a non-empty
closed set F, C H(D), such that for every compact set K C D, function
g(s) € Fy and e > 0,

liminfmT,H(sup lg(s) = C(s+im;a)] < 6) > 0,
T—o00 seK

and the limit

lim mTyH(sup lg(s) — ((s+im;a)] < 5)
T—o00 seK

exists and positive for all but at most countably many € > 0.

Theorem 1 is the first result on periodic zeta-functions in short intervals. In
the case of the Riemann zeta-function, an universality theorem in short intervals
with T1/3(log T)?6/'> < H < T has been proven in [16]. The lower bound for H
till 71273/4053 was improved in [1]. Recently, Y. Lee and L. Paiikowski proved
in [21] for discs under the Riemann hypothesis that one can take H = (log T')?
with some B > 0 depending on a disc. We notice that Theorem 1 is only
the first step in characterization of approximation by shifts ((s+i7; a) in short
intervals. A big problem of identification of the set F}, remains open, obviously,
it is closely connected to the sequence a.

Notice that Theorem 1, in view of (2.1), remains true for H = T'. We expect
that it is also true in the range T%/? < H < T. On the other hand, we stress
that the priority of our investigation is the lower bound of H.

Theorem 1 will be proved in Section 4. Section 2 is devoted to some es-
timates of the mean type. In Section 3, we prove a limit theorem on weakly
convergent probability measures in the space H(D).
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2 Some estimates in short intervals

Let § > 1/2 be a fixed number, and &, (m) = exp{—(m/n)’}. Define the series

(oo}
Cnl(s;a) =Y %’l(m) neN.
m=1
Then, the latter series converges absolutely in every half-plane o > ¢ with
arbitrary &. In this section, we consider approximation of ((s;a) by (,(s;a) in
the mean in short intervals. For this, we need mean square estimates in short
intervals.

Lemma 1. [7]. Let (k,A) be an exponential pair and 1/2 < o < 1 fized. Then,
for TUHAA1=20)/(2(+1)) (Jog T)2+R)/A4H1L < H < T, 1+ X — k > 20, we have
uniformly in H

T+H
/ |C(o +it)|?dt <, H.
T—H

Lemma 2. For T?/™ < H < T and fized 1/2 < o < 31/52, uniformly in H

T+H
/ |C(o +it)|? dt <, H.

T—H

Proof. The lemma follows from Lemma 1 by taking the exponent pair (9/26,
7/13) 5. O

Lemma 3. For T?%/7° < H < T° and fized 1/2 < o < 31/52, uniformly in H

T+H
[ it dt <o i
T—H

Proof. 'We repeat the arguments used in the proof of Theorem 2 of [20] with
the exponent pair (9/26,7/13) in place of (11/30,16/30). O

We also expect that the lemma remains true in the less interesting case
T° < H < T, however, there arise some problems related to the approximate
functional equation for ((s,«). For H = T, the lemma is valid because, for
fixed o > 1/2,

T+T 2T St 1
/ \((aJrit,a)\zdt:/o |C(o+it, a)|? dt <<U,aT;(m Lo T,

T-T — +a)?7
(2.1)
see, for example, Theorem 3.3.1 of [17].

Lemma 4. For T?/™0 < H < T? and fized 1/2 < 0 < 31/52, uniformly in H

T+H
/ I¢(o +it;a)|* dt <0 H.
T—H

Math. Model. Anal., 31(1):63-78, 2026.
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Proof. In view of equality (1.2), we have

(i) = 2260 ﬂqz ( )

-1 2
¢ (s l)
- q

Hence, the lemma follows by Lemmas 2 and 3. O

Therefore,

[C(s30)]* <a C(s)I?

For the statement of the main result of the section, we recall metric d in
the space H(D) inducing its topology. Thus, for f1, fo € H(D),

i2,j SupsEKj |f1(8) _f2(5)|

d(f1, f2) = 1+ supyeg, [f1(5) = fa(s)]

=1

Here {Kj : j € N} is a sequence of compact embedded sets such that
o0
U K; =D,
j=1

and every compact set K C D lies in some set K.

Theorem 2. Suppose that T>*/™0 < H < TY2. Then, for all a,

T+H
lim 1imsupﬁ/ d(Cals +iT30),((s +iT;0)) dT = 0.

n—oo T—00 T

Proof. By the definition of the metric d, it suffices to show that, for all compact
sets K C D, the equality

1 [THH
lim lim sup T / sup [Cn(s +im;a) = ((s +iT;a)|dT =0 (2.2)

n=00 T T sEK
holds. Let us fix a compact set K C D and a periodic sequence a. Thus, there
exists a number 0 < §; < 5/52 such that all s = o + it € K lie in the strip
1/2 4261 < 0 < 1—4;. Suppose that ¢ is from the definition of x,,(m), and
0 =1/2+ 6;. Then the Mellin formula
1 b+i00

— I'z)a™*dz=e"% a,b>0,
2mi b—ioo

where I'(s) is the Euler gamma-function, implies the representation

d+ico
Cn(s;a) = L/a C(s+ z;a)wy(2) dz (2.3)

271—1 —ioo

for s € K, where w,,(z) = 6 1I(6712)n>.
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Let 0 = 1/2+4 61 — 0. Then J; < 0 and d5 > —4. This, properties of the
function I'(s), (2.3), and the residue theorem give

1 d2+1i00
Cnl(s;a) —((s;a) = / C(s+ z;0)wp(2) dz + rw,, (1 — 8).
5

21 5—i00

Hence, for s € K,

Cnls;a) — C(s;a) =1,/OOC(1+(51—U+U+it+iu;a)

21t J_ o 2

1
X Wy <2+51—a+iu> du + rw, (1 — ).

Therefore, shifting ¢ + u to u, we obtain

oo
sup |Cn(s +iT;a) — (s + i, a)| < /
seK — 00

1
C<2+51+i7+iu;a>

X sup

du + |r| sup |w, (1 — s —i7)|. (2.4)
seK seK

2

(3o -sti)
wy | = +01 —s+iu

For the gamma-function I'(s), the estimate
I'(o +it) < exp{—c|t]}, ¢>0, (2.5)

is valid uniformly in ¢ in any fixed finite interval. Thus, by the definition of
wy(2), for s € K,

wy, (1/2 401 — 5+ iu) <5, pt/#Ho—e exp{ - i\u - t|}
< n % exp{—ci|ul}, ¢ >0. (2.6)

Moreover, by (1.2) and the estimate [25],

(o +it,a) <o lt]'? o> 2, [t 22,
we have )
C(o +it,a) <ga t|V?, o> 3 1t>2.

Hence, for 7 > T,

— log2 T e’}
(L)
—o00 log? T

—log?T e’}
Lo K n=% (/ +/ >(T + |u|)1/2 exp{—ci|ul} du
1

—0 0g? T

1
sup‘wn (+51—5+iu> ‘du

1
Iy S "
C(2+ 1—|-z7'—|—zu,a> sup 5

La, K n~% (r+ 1)1/2 exp{—ca log? T}, c2>0.

Math. Model. Anal., 31(1):63-78, 2026.
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Therefore, by (2.4),

def 1 T+H

1= = sup |G (s +it;a) — (s +ir;a)|dr
H T seK

log? T 1 T+H 1
— R Ny ‘d
<<a7K/log2T(H/T ’C (2 o u) T)

1 [T+H
X sup wn(1/2+51—5+iu)‘du+—/ sup |wp (1 — s —47)|dr
sEK H Jr seK

1 T+H .
+ n7% exp{—ec; log? T}E / (r+1)2dr YT+ Ty + J5 (2.7)
T
Trivially, we have
Js Zax n % exp{—czlog® T}, c3>0. (2.8)

For estimation of J;, we apply Lemma 4. Since 0 < d; < 5/52, the inequality
1/2 4 61 < 31/52 is true, and, for |u| < log® T,

T%/70 < H + |u| < T2 +1og? T < TY/?+01,

Thus, Lemma 4 is applicable, and we find

1 T+H
ﬁ/ (€ (1/2+ 81 + i +iua) [ dr
T
1 fTHH+ |
“(w
H Jr_ gy

1 1/2 12
o (7 H +ul)) " <aue (Jul + DY2,

9 1/2
C(1/24 6y +it;a) ’ d’T)

This together with (2.6) and (2.7) yields
log? T
Ty ase n™ [ e 172 expl{—crful} du <oxc n.  (2.9)
Using once more (2.5), we obtain that, for s € K,
wn(1— s —it) € n'~7 exp{—clt + 7|} <x n/*Prexp{—cy|7|}, 1> 0.
Therefore, by (2.7),
pl/2—261 (T+H

Jo L4 K g exp{—ca|7|} AT <q e N2 exp{—cyT}.

This, and (2.7)—(2.9) show the bound
I <4k n=0 4 pl/2-20 exp{—csT} + n=% exp{—cs log? T}.

Taking T" — oo and then n — oo, we find lim,,_,~ limsupp_, ., I = 0. Thus,
(2.2) is valid, and this proves the theorem. O
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3 Weak convergence

Let X be a topological space with its Borel o-field B(X), and P and P,,, n € N,

probability measures on (X, B(X)). By the definition, P, converges weakly to

Pasn— oo (P, _}L> P), if, for every real bounded continuous function f
n oo

on X,
lim [ fdP, :/fdP. (3.1)
X X

n—oo

For A C X, denote by 0A the boundary of the set A. If P(0A) = 0, then A is
called a continuity set of P. Then (3.1) is equivalent to

liminf P,(G) > P(G)

n— oo

for every open set G C X, or

lim P,(A) = P(A)

n—roo

for every continuity set A of P [4].

In this section, we deal with weak convergence for some probability measures
on (H(D),B(H(D))) defined by means of the function ((s; a) is short intervals.
More precisely, we will study

PT,H7a(A) = mT7H(C(s + iT; Cl) S A), Ae B(H(D)),

for T2/ < H < TY2 as T — oo. The main result of the section is the
following statement.

Theorem 3. Suppose that T?*/° < H < TY2. Then, on (H(D),B(H(D))),
there exists a probability measure P, such that Pr p q TL> P,.
— 00

Proof of Theorem 3 is quite standard, however, for a convenience of the
readers, we will present it in almost full form.

We start with a case of certain topological group. Denote by P the set of
all prime numbers, and define the torus

T=][{seC:|s| =1}

p€eP

With the product topology and operation of pointwise multiplication, the set
T is a compact topological group. Let t = (¢(p) : p € P) be elements of T. For
A € B(T), set

Q%H(A) =mry g <(p” 'p € IP’) € A) .

Lemma 5. Suppose that H — oo as T — co. Then, on (T,B(T)), there exists
a probability measure QT such that Qﬂ:} i TL> Qr.
’ —00

Math. Model. Anal., 31(1):63-78, 2026.
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Proof. Consider the Fourier transform fr g of Q% g as T — oo. The charac-
ters of T are of the form .
IT =

peP
where the star means that only a finite number of the integer numbers k&, are
non-zeros. Therefore, denoting k = (k, : k, € Z, p € P), we have

fru(k /<H the ( >dQTH H/T+H(Hp”” )>d7’
H/TJrHeXp{ —ZTZ k, logp} dr. (3.2)

peP

Since the set {logp : p € P} is linearly independent over the field of rational
numbers, from (3.2), we have

1, if
fT)H(E) = exp{ iT 3 cpkp logp} exp{ W(T+H) 3" cp kp logp} i
iH Y " cpkplogp ’

| ?r
p

(Bl
RN
=

Hence,
) o ]_, if E - Q,
Jim fo (k) = { 0, ifk+#0,

and the proof is complete. 0O

The next lemma concerns the weak convergence of

Prna(A) = “mr oy (Cu(s+im;a) € A), A€ B(H(D)).

Lemma 6. Suppose that H — oo as T — oco. Then, on (H(D),B(H(D))),
there exists a probability measure P, o such that Pr gy q ?X—% P
— 00

Proof. We apply Lemma 5 and the weak convergence preservation principle
under continuous mappings, see Section 5 of [4]. Define a mapping u,,  : T —

H(D) by N
G, K
Unp, a Z n )a

m=1
where, for m € N,
tm)= [ o
p'm, pi+itm
The series defining u,, 4 is absolutely convergent for o > & with every finite &.
Therefore, the mapping u,, 4 is continuous. Moreover,

Ambn (m) le |m p_liT

o0
—q l+1)fm amﬁn
u TipeP)) = - = §
n,a ((p p ) le|mpls S+z7'

m=1
pttim

= (u(s+iT;a).
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Hence,

Prima(A) =mrpy (un,u ((p‘” ‘p€ IP’)) € A)
=mr ((p’” peP)e u;iA) = Q%H(UT_L}AA)

for all A € B(H(D). Thus, we have Pp g, = QTHu
A€ B(H(D)),

n.a» Where, for all

QTHU W(A) = QTH( e ).

Therefore, Theorem 5.1 of [4], Lemma 5 and continuity of u,, o imply the rela-
tion

where QT is the limit measure in Lemma 5. Thus, P, n,a = Tu;},. a

Now we consider the measure P, 4 as n — oo.

Lemma 7. The measure P, o is tight, i.e., for every ¢ > 0, there exists a
compact set K = K. C H(D) such that P, o(K) >1—¢, for alln € N.

Proof. In virtue of absolute convergence of the series (,(s;a), it follows that,
for o > 1/2,

1 |am|*k; (m)
1. - 2 m n
AT / (Gnle + it; a)["d Z e

Thus, by Cauchy integral formula, with a certain o1 > 1/2

1 2T o0 2
Suplimsup—/ sup |Cn(s +im;a) 2 dr <k Z [@om| <Rj <00, (3.3)
m

2
neN T—oo T s€K; = o1

where K; are compact sets from the definition of the metric d.

On a certain probability space ({2, B, P), define a random variable 67 which
is uniformly distributed in the interval [T,2T]. Introduce the H(D)-valued
random element

YT,na = YTn,a(s) = Cu(s +ifr;a).
Moreover, let y, q(s) be H(D)-valued random element with the distribution

P, 4. Denote by L. the convergence in distribution. Then, in view of Lemma 6,

D
YT n,a ? Yn,a-

T— o0
Hence,
D
sup }yT7n7a(s)‘ —— sup |yn7a(s)|. (3.4)
s€K; T—oo scK;

Math. Model. Anal., 31(1):63-78, 2026.
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Fix € > 0, and set M; = Q*jsflR?, j € N. Then, (3.3) and (3.4) imply

hmbupP{ sup |yTnu(s)} > Mj} = P{ sup |ynu(s)’ > Mj}
T— 00 seK; seK;

2T

=m su (s+iT;a)| =M, su s+ir;a)| dr

1 (1 " S
. 2
< A <T/T Sseull{)j |Ca(s +iT3a)] d7'> < %5 (3.5)

Let
—{r e H(D): sup |£(s)| < M;,j € N}

seK;

The set K is uniformly bounded on compact subsets of H(D), hence, it is
compact. Moreover, by (3.5),

|
P{y"=a€K5}:1_P{yn,a¢Ks}>1—€Z§:1—6
j=1

for all n € N. Since P, 4 is the distribution of yy, 4, this shows that
P,aK.)>1-—¢
for all n € N. The lemma is proven. O

To pass from the measure Pr g .n,q t0 Pr m,q, we need one more lemma.

Lemma 8. Let xnk, . and y,, n,k € N be H(D)-valued random elements on
arbitrary probability space (£2,B, P). Suppose that

D
Tnk — 7 Tk, Tk —> T,
n—o00 k—o0

and, for every e > 0,

hm lim sup P{d(znk,yn) =€} =0.

k=00 nooo

Then, yn, NG

n—o0

Proof. Since the space H(D) is separable, the lemma is a particular case of
Theorem 4.2 of [4]. O

Proof. [Proof of Theorem 3] Let the random variable 67 g be defined on the
probability space ({2, B, P), and distributed uniformly in the interval [T, T+ H].
Define the H(D)-valued random elements

XT,H,n,a :XT,H,n,u(S) = Cn(s + Z'0T,H§ CL),
X1 o =X1H4(s) = ((s+i0r m;0),
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and let X, o have the distribution P, 4. By Lemma 6,
D
XT,H,n,a —_— Xn,a~ (36)
T—o0

Since, by Lemma 7, the measure P, , is tight, in virtue of the Prokhorov
theorem, Theorem 6.1 of [4], it is relatively compact. Therefore, there is a
sequence n; — oo and a probability measure P, on (H(D),B(H(D))) such
that Py, q ., P,. Hence,

=00

Xpyo —— P, (3.7)

l—o0

Now, we apply Lemma 5. For every € > 0,
P {d (X1 t1.m.a(5) X1.11.0(5)) 25} —mqy {d (Cu(s+iTa), C(s-+iT; ) >s}

1 T+H
< H—g/ d (Co(s+iT;a),((s + iT;a)) dr.
T

Therefore, Theorem 2 yields

lim limsup P {d (X7, H,0,0(8), X1,11,0(8)) = 5} =0.

I 700

The latter equality, and relations (3.6) and (3.7) show that Lemma 8 is appli-
cable to random elements Xt 7, ,a, Xn,,a and X7 g 4. Thus, by Lemma 8 and
(3.7), we obtain

D
X7, g0 — Pa,
T—o0

what is equivalent to Pr g 4 TL> P,. The theorem is proven. 0O
— 00

4 Approximation results

In this section, we prove Theorem 1. It is a simple consequence of Theorem 3.
We recall that the support of the measure Py is a minimal closed set Sq C H(D)
such that P,(Sy) = 1. The set consists of all elements f € H(D) satisfying
P,(Gy) > 0 for any open neighbourhood Gy of f.

Proof. [Proof of Theorem 1] We take Fy = S,. Then Fy is non-empty closed
set because Py (F,) = 1. If g € Fy, then,

Gy = {f € H(D) : sup | f(s) — g(s)] < }

seEK

is an open neighborhood of an element g of the support of the measure P,.
Hence, by a support property,

Pa(Gge) > 0. (4.1)

Math. Model. Anal., 31(1):63-78, 2026.
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Therefore, by Theorem 3 and the equivalent of weak convergence in terms of
open sets, we have

lim inf Pr.7.4(Gy.c) > Pa(Gy.e) > 0.
—00

This, and the definitions of Pr g . and Gy . give the first statement of the
theorem.

For the proof of the second statement of the theorem, we apply the equiv-
alent of weak convergence in terms of continuity sets. Observe, that the set
Gy, is a continuity set of the measure P, for all but at most countably many
e > 0. Actually, the boundary 0G, . lies in the set

{£eHD):sup|f(s) - g(s)| =},
seK
therefore, 0G4, N 0Gy ., = @ for positive €1, €2, €1 # €2. Hence, it follows
that P,(0Gg4,) > 0 for at most countably many € > 0, i.e., P,(0Gg4.) = 0 for
all but at most countably many € > 0.
Now, in view of Theorem 3, the above remark, the equivalent of weak
convergence in terms of continuity sets and (4.1) imply the limit

Tlg%o PT,H,a(Gg,s) = Pu(Gg,s) >0

for all but at most countably many ¢ > 0. This proves the second statement
of the theorem. The proof is complete. O
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