Study of a class of nonlinear heterogeneous diffusion with mixed phases under L∞ − data

DOI: https://doi.org/10.3846/mma.2026.23889

Abstract

In this paper we investigate a class of nonlinear degenerate parabolic equations involving heterogeneous (p,q)-Laplacian operators and subject to Dirichlet boundary conditions. These equations model complex diffusion phenomena with mixed-phase behavior in heterogeneous media. Our aim is to establish existence and uniqueness results for weak solutions under minimal regularity assumptions on the source term f, without requiring any control at infinity. The main difficulties stem from the degeneracy of the operator, the non-standard (p,q)-growth conditions, and the discontinuity of material phases. To overcome these challenges, we develop a variational framework based on Orlicz–Sobolev space theory and employ a generalized version of the Minty–Browder theorem to ensure the surjectivity of the nonlinear operator. Our approach yields new energy estimates, compactness results in non-reflexive settings, and stability under L-perturbations of the data. This work provides a rigorous mathematical foundation for analyzing nonlinear diffusion problems in complex and irregular environments.

Keywords:

double phase operator, weak solution, existence, semi-discretization, Rothe’s method, weighted Sobolev space

How to Cite

Hassoune, E. M., Jamea, A., Ammar, A., & Kaddiri, A. (2026). Study of a class of nonlinear heterogeneous diffusion with mixed phases under L∞ − data. Mathematical Modelling and Analysis, 31(1), 47–62. https://doi.org/10.3846/mma.2026.23889

Share

Published in Issue
January 20, 2026
Abstract Views
0

References

E. Azroul, H. Redwane and M. Rhoudaf. Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Portugaliae Mathematica, 66(1): 29–63, 2009. https://doi.org/10.4171/pm/1829

V. Bhuvaneswari, S. Lingeshwaran and K. Balachandran. Weak solutions for p-Laplacian equation. Advances in Nonlinear Analysis, 4:319–334, 2012. https://doi.org/10.1515/anona-2012-0009

H. Bouaam, M. El Ouaarabi and S. Melliani. On a class of non-local Kirchhofftype double phase problem with variable exponents and without the Ambrosetti– Rabinowitz condition. Iran J Sci, 2025. https://doi.org/10.1007/s40995-025-01813-1

Ph. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J.L. Vazquez. An L1 - theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22:241–273, 1995.

V. Calogero. The existence of solutions for local Dirichlet (r(u),s(u))-problems. Mathematics, 10(2):237, 2022. https://doi.org/10.3390/math10020237

A.C. Cavalheiro. Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Paran. Mat., 26:117–132, 2008. https://doi.org/SPM-ISNN-003787

A.C. Cavalheiro. Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal., 19:41–54, 2013. https://doi.org/10.1515/jaa-2013-0003

P.Y. Chen, S. Levine and M. Rao. Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math., 66:1383–1406, 2006. https://doi.org/10.1137/050624522

L. Diening, P. Harjulehto, P. Hästö and M. Růžička. Lebesgue and Sobolev Spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics. Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8

N. Chems Eddine, A. Ouannasser and M. Alessandra Ragusa. On a new class of anisotropic double phase equations. Journal of Nonlinear and Variational Analysis, 9:329–355, 2025.

Y. Fang, V.D. Ra˘dulescu and C. Zhang. Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation. Mathematische Annalen, 388(3):2519–2559, 2024. https://doi.org/10.1007/s00208-023-02593-y

P. Hasto. The p(x)-Laplacian and applications. Proc. Int. Conf. Geometric Function Theory, 15:53–62, 2007.

A. Jamea, A.A. Lamrani and A. El Hachimi. Existence of entropy solutions to nonlinear parabolic problems with variable exponent and L1-data. Ricerche di Matematica, 67:785–801, 2018. https://doi.org/10.1007/s11587-018-0359-y

A. Kaddiri, A. Jamea, M. Largdir and E. Hassoune. Existence of entropy solutions to nonlinear degenerate weighted elliptic P(.)-Laplacian problem and L1-data. Annals of Mathematics and Computer Science, 22:100–117, 2024. https://doi.org/10.56947/amcs.v22.290

N. Moujane and M. El Ouaarabi. On a class of Schrödinger–Kirchhoff–double phase problems with convection term and variable exponents. Commun. Nonlinear Sci. Numer. Simul., 141:108453, 2025. https://doi.org/10.1016/j.cnsns.2024.108453

M. El Ouaarabi N. Moujane and C. Allalou. Elliptic Kirchhoff-type system with two convection terms and under Dirichlet boundary conditions. Filomat, 37(28):9693–9707, 2023. https://doi.org/10.2298/FIL2328693M

M. El Ouaarabi, C. Allalou and S. Melliani. Weak solutions for double phase problem driven by the (p(x),q(x))-Laplacian operator under Dirichlet boundary conditions. Bol. Soc. Paran. Mat., 41:1–14, 2023. https://doi.org/10.5269/bspm.62182

M. Paul, K. Sarkar and K. Tiwary. Fixed point result for a class of extended interpolative Ciric-Reich-Rus (α,β,γ)-type contractions on uniform spaces. South East Asian J. of Mathematics and Mathematical Sciences, 19(1):103–120, 2023. https://doi.org/10.56827/SEAJMMS.2023.1901.10

M. Růžička. Electrorheological Fluids, Modeling and Mathematical Theory, volume 1748 of Lecture Notes in Mathematics. Springer, 2000. https://doi.org/10.1007/BFb0104029

A. Sabri and A. Jamea. Rothe time-discretization method for a nonlinear parabolic p(u)-Laplacian problem with Fourier-type boundary condition and L1data. Ricerche Mat., 2020. https://doi.org/10.1007/s11587-020-00544-2

M. Sanchon and J.M. Urbano. Entropy solutions for the p(x)-Laplace equation. Trans. Amer. Math. Soc., 361:6387–6405, 2009. https://doi.org/10.1090/S0002-9947-09-04399-2

C. Zhang. Entropy solutions for nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ., 2014(92):41–54, 2014.

J. Zuo, M. Allalou and A. Raji. On a class of critical Schrödinger–Kirchhoff–type problems involving anisotropic variable exponent. Discrete and Continuous Dynamical Systems, 18:506–524, 2025. https://doi.org/10.3934/dcdss.2024102

View article in other formats

CrossMark check

CrossMark logo

Published

2026-01-20

Issue

Section

Articles

How to Cite

Hassoune, E. M., Jamea, A., Ammar, A., & Kaddiri, A. (2026). Study of a class of nonlinear heterogeneous diffusion with mixed phases under L∞ − data. Mathematical Modelling and Analysis, 31(1), 47–62. https://doi.org/10.3846/mma.2026.23889

Share