One-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime

DOI: https://doi.org/10.3846/mma.2025.23218

Abstract

We investigate the existence, uniqueness and multiplicity of one-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime. The main tools are the Schauder fixed point theorem along with cut-off technique and the  Leggett-Williams fixed point theorem.  In addition, we give some practical models to illustrate the effectiveness of our results.

Keywords:

higher mean curvature operator, Minkowski spacetime, singular Dirichlet problem, one-signed rotationally symmetric solutions

How to Cite

Liu, M., Pei, M., & Wang, L. (2025). One-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime. Mathematical Modelling and Analysis, 30(4), 583–603. https://doi.org/10.3846/mma.2025.23218

Share

Published in Issue
November 6, 2025
Abstract Views
51

References

P. Bayard. Dirichlet problem for spacelike hypersurfaces with prescribed scalar curvature in Rn,1. Calc. Var. Partial Diferential Equations, 18:1–30, 2003. https://doi.org/10.1007/s00526-002-0178-5

P. Bayard and F. Delanoè. Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(3):903–915, 2009. https://doi.org/10.1016/j.anihpc.2008.03.008

C. Bereanu, P. Jebelean and J. Mawhin. Radial solutions for Neumann problems with ϕ-Laplacian and pendulum-like nonlinearities. Discrete Contin. Dyn. Syst., 28(2):637–648, 2010. https://doi.org/10.3934/dcds.2010.28.637

C. Bereanu, P. Jebelean and P.J. Torres. Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal., 265(4):644–659, 2013. https://doi.org/10.1016/j.jfa.2013.04.006

C. Bereanu and J. Mawhin. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian. J. Differential Equations, 243(2):536–557, 2007. https://doi.org/10.1016/j.jde.2007.05.014

T. Cheng and X. Xu. Existence of positive solutions for one dimensional Minkowski curvature problem with singularity. J. Fixed Point Theory Appl., 25:72, 2023. https://doi.org/10.1007/s11784-023-01076-6

I. Coelho, C. Corsato, F. Obersnel and P. Omari. Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud., 12(3):621–638, 2012. https://doi.org/10.1515/ans-2012-0310

C. Corsato, F. Obersnel, P. Omari and S. Rivetti. Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl., 405:227–239, 2013. https://doi.org/10.1016/j.jmaa.2013.04.003

G. Dai, A. Romero and P.J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain Friedmann-Lemaître-RobertsonWalker spacetimes. J. Differential Equations, 264(12):7242–7269, 2018. https://doi.org/10.1016/j.jde.2018.02.014

G. Dai, A. Romero and P.J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes. Discrete Contin. Dyn. Syst. Ser. S, 13(11):3047–3071, 2020. https://doi.org/10.3934/dcdss.2020118

D. de la Fuente, A. Romero and P.J. Torres. Existence and extendibility of rotationally symmetric graphs with a prescribed higher mean curvature function in Euclidean and Minkowski spaces. J. Math. Anal. Appl., 446(1):1046–1059, 2017. https://doi.org/10.1016/j.jmaa.2016.09.022

K. Deimling. Nonlinear Functional Analysis. Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7

F. Delanoè. The Dirichlet problem for an equation of given Lorentz-Gauss curvature. Ukrainian Math. J., 42:1538–1545, 1990. https://doi.org/10.1007/BF01060827

C. Gerhardt. Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds. J. Reine Angew. Math., 554:157–199, 2003. https://doi.org/10.1515/crll.2003.003

S.Y. Huang. Classification and evolution of bifurcation curves for the onedimensional Minkowski-curvature problem and its applications. J. Differential Equations, 164(9):5977–6011, 2018. https://doi.org/10.1016/j.jde.2018.01.021

Y. Huang. Curvature estimates of hypersurfaces in the Minkowski space. Chin. Ann.Math.Ser.B,34:753–764,2013. https://doi.org/10.1007/s11401-013-0789-5

N.M. Ivochkina. Solution of the Dirichlet problem for curvature equations of order m. Math. USSR Sbornik, 67:317–339, 1990. https://doi.org/10.1070/SM1990v067n02ABEH002089

Y.H. Lee, I. Sim and R. Yang. Bifurcation and Calabi-Bernstein type asymptotic property of solutions for the one-dimensional Minkowskicurvature equation. J. Math. Anal. Appl., 507(1):125725, 2022. https://doi.org/10.1016/j.jmaa.2021.125725

R.W. Leggett and L.R. Williams. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J., 28:673–688, 1979. https://doi.org/10.1512/iumj.1979.28.28046

A.M. Li. Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space. Arch. Math., 64:534–551, 1995. https://doi.org/10.1007/BF01195136

R. Ma and M. Xu. Positive rotationally symmetric solutions for a Dirichlet problem involving the higher mean curvature operator in Minkowski space. J. Math. Anal. Appl., 460:33–46, 2018. https://doi.org/10.1016/j.jmaa.2017.11.049

R. Ma, M. Xu and Z. He. Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator. J. Math. Anal. Appl., 484:123728, 2020. https://doi.org/10.1016/j.jmaa.2019.123728

R. Ma, Z. Zhao and X. Su. Global structure of positive and sign-changing periodic solutions for the equations with Minkowshi-curvature operator. Adv. Nonlinear Stud., 24:775–792, 2024. https://doi.org/10.1515/ans-2023-0130

M. Pei and L. Wang. Multiplicity of positive radial solutions of a singular mean curvature equations in Minkowski space. Appl. Math. Lett., 60:50–55, 2016. https://doi.org/10.1016/j.aml.2016.04.001

M. Pei and L. Wang. Positive radial solutions of a mean curvature equation in Minkowshi soace with strong singularity. Proc. Amer. Math. Soc., 145:4423– 4430, 2017. https://doi.org/10.1090/proc/13587

M. Pei and L. Wang. Positive radial solutions of a mean curvature equation in Lorentz-Minkowski space with strong singularity. Appl. Anal., 99:1631–1637, 2020. https://doi.org/10.1080/00036811.2018.1555322

C. Ren, Z. Wang and L. Xiao. The convexity of entire spacelike hypersurfaces with constant σn−1 curvature in Minkowski space. J. Geom. Anal., 34:189, 2024. https://doi.org/10.1007/s12220-024-01630-9

C. Ren, Z. Wang and L. Xiao. The prescribed curvature problem for entire hypersurfaces in Minkowski space. Anal. PDE, 17:1–40, 2024. https://doi.org/10.2140/apde.2024.17.1

J. Urbas. The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space. Calc. Var. Partial Differential Equations., 18:307–316, 2003. https://doi.org/10.1007/s00526-003-0206-0

J. Urbas. Interior curvature bounds for spacelike hypersurfaces of prescribed k-th mean curvature. Comm. Anal. Geom., 11(2):235–261, 2003. https://doi.org/10.4310/CAG.2003.v11.n2.a4

M. Xu. Rotationally symmetric solutions of the prescribed higher mean curvature spacelike equations in Minkowski spacetime. Bull. Korean Math. Soc., 61:29–44, 2024.

R. Yang, Y.H. Lee and I. Sim. Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain. J. Differential Equations, 268:4464–4490, 2020. https://doi.org/10.1016/j.jde.2019.10.035

R. Yang, I. Sim and Y.H. Lee. π/4-tangentiality of solutions for one-dimensional Minkowski-curvature problems. Adv. Nonlinear Anal., 9(8):1463–1479, 2020. https://doi.org/10.1515/anona-2020-0061

F. Ye, S. Yu and C.L. Tang. Global bifurcation of one-signed radial solutions for Minkowski-curvature equations involving indefinite weight and non-differentiable nonlinearities. J. Math. Anal. Appl., 540:128583, 2024. https://doi.org/10.1016/j.jmaa.2024.128583

X. Zhang and M. Feng. Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space. Commun. Contemp. Math., 21(3):1850003, 2019. https://doi.org/10.1142/S0219199718500037

View article in other formats

CrossMark check

CrossMark logo

Published

2025-11-06

Issue

Section

Articles

How to Cite

Liu, M., Pei, M., & Wang, L. (2025). One-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime. Mathematical Modelling and Analysis, 30(4), 583–603. https://doi.org/10.3846/mma.2025.23218

Share