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1 Introduction

Throughout this paper, L¥*! denotes the (N + 1)-dimensional Minkowski
spacetime endowed with the standard Lorentzian metric (, ) = —(dt)? +
SN (da;)2. For a spacelike hypersurface 37 in LN*1, the k-th mean curvature
Sy is a geometric invariant encoding the geometry of Y. From the perspec-
tive of physics, the k-th mean curvature Sy plays an important role in General
Relativity. Each S intuitively measures the time evolution towards the future
or the past of the spatial universe. From an algebraic perspective, each one
of these functions corresponds to a coefficient of the characteristic polynomial
of the shape operator corresponding to a unit timelike vector field pointing to
future. In fact, each k-th mean curvature Sy is described as a certain type of
average measure of the principal curvatures of the hypersurface X' [11]. Specif-
ically, S7 is opposite of the usual mean curvature of the principal curvature,
S, is equal to the scalar curvature up to a constant factor, and Sy is (—1)V+!
times the Gauss-Kronecker curvature.
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For a given prescription function Hy, the prescribed k-th mean curvature
problem is to find a spacelike hypersurface X in LY*! satisfying

Sk(p) = Hk(p), VYpe X, (1.1)

where Si(1 < k < N) is the k-th mean curvature of the hypersurface. We
make a hyperplane IT that passes through (0) and is orthogonal to the line
v in LN¥*! where v is a timelike parameter line pointing towards the future.
The hypersurface we are looking for can be denoted as X = {(v(x),z) : ¢ €
I} € R x RY. On the one hand, if we suppose that the prescription function
Hj, is rotationally symmetric concerning v, we can naturally assume that v has
the same symmetric, namely, v(z) = v(r) where r = r(z) is the distance from
x to ¥(0) in II. On the other hand, it follows from [11,21] that the differen-
tial operator Si(1 < k < N), associated with the k-curvature of rotationally
symmetric graphs in LY, can be written as follows:

Mk : {’U S 02(R+) : 'U/(O) _ 0’ |’U/| < 1} N R,
1 Nek ks '

(My)(r) = W(T ¢" (v )) ., 1€ (0,+00);
0, r=0,

where ¢(s) := s/v/1—3s% and 1 < k < N. Therefore, to obtain rotationally
symmetric solutions of Equation (1.1) with the Dirichlet boundary condition,
it is only sufficient to consider the following one-dimensional boundary value
problem

(Myv)(r) = Hy(v(r),7), 7€ (0,R) (1.2)

with the mixed boundary condition
v'(0) =0, wv(R)=0. (1.3)

Over the past few decades, the study of the prescribed mean curvature
spacelike equation in Minkowski spacetime LY *! has received widespread at-
tention. When k = 1, the existence, uniqueness, multiplicity and bifurca-
tion of rotationally symmetric solutions for Dirichlet problems with prescribed
mean curvature equation in LVt have been widely studies, for instance, see
[4,5,6,7,8,9,10,15,18,24, 25, 26, 32, 33, 35] and references therein. Also, we
refer for examples to [3,22, 23, 34] for other types boundary value problems
with the prescribed mean curvature equation in L¥*+1. When k = 2, we refer
the reader to [1,2,29] for Dirichlet problems with the prescribed scalar curva-
ture equation, and on the case of more general ambient spacetimes, see [14].
When k = N, we specifically mention [13,20] for Dirichlet problems with the
Gauss-Kronecker curvature. However, for Dirichlet problems involving the pre-
scribed k-th mean curvature operator when 3 < k < n, the existing relevant
research remains scarce. The study of Dirichlet problems with a prescribed
k-th (1 < k < N) mean curvature operator originated from Ivochkina [17],
in which the main tools utilized are the implicit function theorem and Leray-
Schauder principle. And then, the problems have been considered by some
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authors, for instance, [16,27,28,30]. In recent years, using the Schauder fixed
point theorem and the standard prolongability theorem of ordinary differen-
tial equations, de la Fuente, Romero and Torres [11] derived the existence and
multiplicity of rotationally symmetric solutions to Eq. (1.1) with the Dirich-
let boundary condition. Ma and Xu [21] offered a geometric interpretation of
the results of [11] and obtained the existence of rotationally symmetric entire
solutions via the global bifurcation theory. More recently, Xu [31] considered
the existence of rotationally symmetric entire solutions for (1.2)—(1.3) by using
topological degree methods.

We note that most of the literature mentioned above is non-singular prob-
lems, the research on singular problems is rarely seen [5,6,10,24,26], and such
problems correspond to the case of & = 1, while the results are extremely
rare [31] when & > 1.

Motivated and inspired by the above works, the purpose of this article is
to establish the existence, uniqueness and multiplicity of the one-signed rota-
tionally symmetric solutions of the singular Equation (1.1) with the Dirichlet
boundary condition. From the above discussion, we are led to consider the sin-
gular problem (1.2)—(1.3), where the prescription function Hy may be singular
at r =0,r = R, v =0, and v = £R. Our main models of the prescription
function are

a bv c
Hi(v.7) = (-1)* (TO‘I(R —r)Piyp + raz(R — r)P2 + ros(R — 7")53> ’
Hy,(v,r) = (=1)* Au(r)o” /(R = v)°,

where 1 <k < N,a >0, bec >0, pg >0, ;,3; € [0,1), i = 1,2,3 and
p >k, u(-) € C([0,R], (0,4+00)), A > 0, 0 < o0 < k/2. We note that the above
models of prescription functions take those in [25,26] and [24] as special cases,
respectively.

It is worth emphasizing that our results are not only new, but also generalize
and improve the corresponding results in [24,25,26]. In addition, we allow that
the prescription function Hj may be strongly singular at v = 0, and we do
not assume that Hj, satisfies the monotonicity condition as in [25,26] when
obtaining the existence of solutions. Meanwhile, Hy may be strongly singular
at v = +R provided k£ > 2, when we establish the multiplicity of solutions to
problem (1.2)—(1.3).

This paper is organized as follows: In Section 2, we introduce some no-
tations and two fixed point theorems. In Section 3, we separate k into odd
and even cases and establish the existence of positive(or negative) solutions to
the singular problem (1.2)—(1.3) by using the Schauder fixed point theorem.
And then, by imposing the monotonicity condition on Hy, the uniqueness of
positive and negative solutions of the singular problem (1.2)—(1.3) is obtained.
In Section 4, we also divide k into odd and even cases and present the mul-
tiplicity of positive(or negative) solutions to the singular problem (1.2)—(1.3)
by using the Leggett-Williams fixed point theorem. In the last section, some
model examples are given as applications of our main results.

Math. Model. Anal., 30(4):583-603, 2025.
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2 Preliminaries
In this section, we introduce some concepts and fixed point theorems which
will be used later.

Lemma 1. (Schauder Fixed Point Theorem [12]) Let {2 be a bounded closed
conver subset of Banach space E. Then the continuous compact mapping T :
2 — (2 has a fixed point.

Let P be a cone in the real Banach space E. A map « is a nonnegative
concave functional on the cone P if it satisfies

(i) a: P — [0,400) is continuous;
(il) a(te+ (1 —t)y) > ta(z) + (1 —t)a(y) for all z,y € P and 0 <t < 1.

In addition, let P. := {& € P : ||z|| < ¢} and P(«a,a,b) := {x € P : a <
a(z), [|lz]]) < b}.

Lemma 2. (Leggett-Williams Fixed Point Theorem [19]) Let P be a cone in
the real Banach space E, A : P, — P, be completely continuous and o be
a nonnegative continuous concave functional on P with a(x) < ||z|| for all
x € P.. Suppose there exist 0 < a < b < d < c such that the following
conditions hold:

(i) {x € P(a,b,d) : a(x) > b} # 0 and a(Az) > b for all x € P(a, b, d);
(ii) |Az|]) > b for x € P(a,b,c) with ||Ax||) > d.
Then, the operator A has at least three fived points x1, 2, x3 € P, satisfying
lzill < a, a(ze) >b, a<|zs] with a(zs) < b.

We introduce some symbols that will be used in this article. The continuous
function space C[0, R] equipped with the maximum norm || - || and Bg is an
open ball of center 0 and radius R in C[0, R]. Let

P ={v € C[0, R] : v(r) is nonnegative and nonincreasing on [0, R]}.

Evidently, P is a cone in C|0, R].

3 Existence and uniqueness

We now consider the one-dimensional singular problem (1.2)—(1.3), that is,

V(0) =0, v(R)=0, (3.1)

{ (rN_kqﬁk(v'))/ = NrN"1Hy(v,r), 7€ (0,R),
where ¢(s) :=s/v/1—52, 1<k <N, H, € C(((—00,0) U (0,40)) x (0, R))
may be singular at 7 = 0, »r = R and v = 0 satisfying (—1)* Hy(v,r) > 0 for all
(v,7) € ((=00,0) U (0,+00)) x (0, R).
Next, we divide k£ into odd and even cases to discuss the existence and
uniqueness of the solution of the singular problem (3.1).
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3.1 kis odd

We first utilize the Schauder fixed point theorem to establish the existence of
positive solutions to problem (3.1).

Theorem 1. Let k be an odd number. Assume that
R

(Cy) /o égnvag(R\Hk(v,rﬂdr < 400 for all § € (0, R).

Then, problem (3.1) has at least one positive solution.

Proof. Firstly, we define the modification H; (v, r) of Hi(v,r) by

Hi(—R,7r), v< —R;
Hi(v,r) = Hi(v,7),  0<|v] <R (3.2)
Hy(R,7), v>R.

Then, H} € C(((—00,0) U (0,+00)) x (0, R)) satisfies

R
/0 L |Hi(0.1)|dr < 00, V6 € (0. R+ 1), (3.3)

We consider the modified singular problem

(3.1%)

(oo = reom
v'(0) =0, wv(R)=0.

For each n € N, we first define the set (2,, as follows:
1
2, = {v € C[0, R] : v(r) is nonincreasing and - < v(r) < R+ 1on|0,R]}.

Obviously, §2,, is a nonempty bounded closed convex subset in C[0, R]. We also
define the operator T, : 2,, — C[0, R] by

(Tnv)(r):i—/quﬁ_l((tAzka /OtTN—IH;(U(T),T)dT)l/k)dt. (3.4)

By the standard proof, we know that T}, is well defined.

Next, we divide the proof into the following three steps.

Step 1. We show that there exists v,€(2, such that T,v,=v, for each
n € N. Assume that n € N is given. Note that H}(v,r) < 0 for all (v,7) €
((—00,0) U (0,400)) x (0, R) and

S

<1, Vs>0. 3.5
T (3.5)

0<o¢™(s) =

Then, for all v € £2,,, we have

1
< (T,v)(r) SR—}—; <R+1, rel0,R],

S|

Math. Model. Anal., 30(4):583-603, 2025.
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and thus T,,(f2,) C C[0, R] is bounded. On the other hand, from (3.4) and
(3.5), for all r1, 75 € [0, R] and v € §2,,, we can obtain

[ (G5 [ pwimmar) Yo

<|ry —ral.

[(Tno)(r1) = (Tho)(r2)| <

This implies T, (§2,) is equicontinuous. Then, we know that T),(£2,) is com-
pact in C[0, R] by the Arzela-Ascoli theorem. Taking into account that 2, is
bounded and closed, there is a sequence {v,,} C 2, satisfying lim,, o vy, =
v € 2,. Let
gn(r) = max |Hj(v,7)|, 7€ (0,R).
L<y<R+1

It follows from (3.3) that g, € L'(0,R). Since 1/n < v,(r) < R+ 1 for
r € [0, R], m € N, we have

TN HH} (0 (1), 7)| < TV g (1) < RN Yqu(7), V7€ (0,R).
This together with Lebesgue dominated convergence theorem implies that

lim (Thv,,)(r) = (Tho)(r)

im
m—0o0
uniformly for € [0, R]. Hence T;, is continuous in {2,,. In addition, it is clear
that (7),v)(r) is nonincreasing on [0, R] for each v € §2,,, and then T, (§2,) C §2,,.
Thus by Lemma 1, there exists v,, € {2, such that T,,v, = v,.

Step 2. We prove that there is z € C[0, R] satisfying
z(r) >0, Vrel0,R), (3.6)
such that
vp(r) > 1/n+z(r), Vre (0,R).
Indeed, we let
= i H; € (0, R). 3.7
p) = min (el 7 e 0.8 (1)
Clearly, p € L'(0, R) by (3.3). Since H;(v,r) is singular at v = 0, it follows
from (3.7) that for all (v,r) € [1/n, R+ 1] x (0, R),

|H(v,r)| =2 | min |Hi(v,7)| =p(r) > 0. (3.8)
<v<R+1

Notice that 1/n < wv,(r) < R+ 1, r € [0, R] and (3.8), we obtain
|Hf (v (1), )| > p(r) >0, re€(0,R), neN. (3.9)

Due to Tp, v, = vy, it follows from (3.5) and (3.9) that

on(r) :i-/ﬁsl((t]jvk /OtTN1H,:(vn(7-),7)d7>l/k>dt

zi+/rR¢—1((t]in /OtTN_lp(T)dT)l/k>dt

=1/n+z(r), Vre (0,R).
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We note that z € C[0, R] satisfies (3.6) because of p € L'(0, R).

Step 3 We assert that {v,,} has a convergent subsequence. Because 1/n <
lvnlloo < R+ 1, n € N, we know that {v,} is uniformly bounded. Notice that
for all n € N,

v (r)] <1, ¥relo,R],

it follows that for all 1,79 € [0, R] and n € N,
|Un(r1) - ’Un(7"2)| < |7“1 — 7“2|.

Thus, {v,} is equicontinuous in [0, R]. From the Arzela-Ascoli theorem, {v,}
has convergent subsequences. Without loss of generality, we can assume that
Up — 0 € 2,(n — o0). Obviously, 9(R) = 0. Notice that T,v,, = v,, we have

r 1/k
v;(r)—gbl((Tﬁk/oTNIH,:(vn(T),T)dT) ) re(OR). (3.10)

Taking n € (0, R), from (3.10), we get for all r € [0, 1],

on(r /¢ < e k/t NlHZ(vn(T),T)dT)l/k>dt. (3.11)

Let 0 = minge[o,, 2(s) > 0, where z(s) is given by Step 2. For each n € N, we
can obtain

1
o< ) So(r) S R+1, Ve (0,n). (3.12)

Furthermore, we also let w(r) = max,<y<p+1 |[Hi(v,7)|,r € (0,R). Then,
w € LY(0, R) by (3.3). Hence, from (3.12), we have

NN H (v, (), )| < ™V lw(r) < 9V rw(r), 7€ (0,n). (3.13)

It follows from (3.11), (3.13) and Lebesgue dominated convergence theorem
that for r € (0,n),

_ /¢ ( e k/ N—lH,:@(T),T)dT)”k)dt. (3.14)

Let n — R~ in (3.14) and from the absolute continuity of Lebesgue integral,
we have

o(r) = —/TRqs-l((t;Vk /OtTN-lH,:(@(T),T)dT)l/k)dt, r e (0,R),

and thus,

000 =0 (e [ 7 i) Yt v 0.1),

This implies v'(0) = 0 and

(erquk (1'/(7‘)))/ = NerlH,’;({)(r),r), r € (0,R).

Math. Model. Anal., 30(4):583-603, 2025.
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At the same time, from (3.11), o(r) > 0, r € [0, R). Therefore, ¢ is a positive
solution of modified problem (3.1*). Notice that 0 < o(r) < R on (0, R), it
follows that © is a positive solution of problem (3.1). This completes the proof
of the theorem. O

Remark 1. Theorem 1 generalizes and improves the corresponding existence
results in [25].

By imposing a monotonicity condition for the prescription function Hy, we
can establish the uniqueness of the positive solution to the singular problem
(3.1).

Theorem 2. Let k be an odd number. Assume that (Cy) hold. Suppose also
that

(Cgq) for each fized r € (0, R), Hy(v,r) is nondecreasing in v € (0, R).

Then, problem (3.1) has a unique positive solution.

Proof. The existence of positive solutions to problem (3.1) follows from The-
orem 1 immediately.

Uniqueness. By contradiction, suppose that v (r) and va(r) are two positive
solutions of problem (3.1) satisfying v1 # v2. Then, there exists ro € [0, R]
such that v1(rg) # va(ro). Without loss of generality, we assume that vy (rg) >
va(ro). Hence, there is a closed interval [a,b] C [0, R] such that v;(a) — ve(a)
is the maximum value of v1(r) — va(r) on [a,b], vi(r) > va(r), r € [a,b),
vi(a) = vh(a) and v1(b) = va(b). Note that

(P¥ 50 (1)) = MoV Hi (i) 7), e (O.R), i = 1,2

Integrating the above equation on [a,t] C [a,b](t € (a,b]), we get for i = 1,2,

ol(t)=¢ ((( IV (vh0)) + / tT“ka(T%T)dT)W)-

It follows that for i = 1,2,

b) — v;(a)
/‘b ( (a/t) kk(”z{(a)) +t1\]’\ik /:TN_lHk(vi(T),T)dT)l/k>dt,

This together with (Cg) implies that vy(a) — v2(a) < 0, which contradicts
v1(a) > v2(a). This completes the proof of the theorem. O

3.2 kis even

Similar to the case that k is an odd number, we now establish the existence
and uniqueness of positive and negative solutions to the singular problem (3.1),
when k is an even number.
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Theorem 3. Let k be an even number. Assume that
R
(Cy) /0 5§II|1;3\‘}§{RHk(U7T)dT < +oo forall § € (0, R).

Then, problem (3.1) has at least two solutions, one is positive and the other is
negative.

Proof. Firstly, we prove the existence of positive solutions. To do this, for
each n € N, we define a bounded closed subset §2;" in C|0, R] as follows:

2% = {v e C0,R] : v(r) is nonincreasing and 1 <wv(r) < R+1onl0,R]}.
n

We also define the operator .7 on 2" by

(To)r) =+ +[R¢—1((tjivk /Ot TN-lH,:@(T),T)dT)”k)dt,

where Hj is defined in (3.2). Then T}/ is well defined. Similar to the Step 1
of Theorem 1, we have that there exists v, € 27 such that T v, = v, for
each n € N. Furthermore, using the Arzela-Ascoli theorem, we know that {v,, }
has a convergent subsequence whose limit va' is a positive solution of modified
problem (3.1%). Notice that 0 < v (r) < R for r € (0, R), then v{ is a positive
solution of problem (3.1). Next, we show the existence of negative solutions.
For each n € N, we define a bounded closed subset (2, as follows:

2, ={veC0, R] : v(r) is nondecreasing and —R—1<v(r) < 1 on [0, R]}.
n

We also define the operator T, on {2, by

<T;v)(r)=—i—AR¢‘1<(t1§Vk /OtTN_lHZ(U(T),T)dT)l/k>dt.

It is easy to know that T, is well defined. Similar to the proof of Theorem 1,
using the Schauder fixed point theorem and the Arzela-Ascoli theorem, we can
deduce that the modified problem (3.1*) has a negative solution v, , which is
a negative solution of problem (3.1). The details of the process are omitted.
This completes the proof of the theorem. O

Theorem 4. Let k be an even number. Assume that (Cy1) hold. Suppose also
that

(Cy) for each fived r € (0,R), Hy(v,r) is nondecreasing in v € (0,R) and
nonincreasing in v € (—R,0).

Then, problem (3.1) has only two solutions, one is positive and the other is

negative.

Proof. The existence of positive and negative solutions to problem (3.1) fol-
lows from Theorem 3, immediately.

Uniqueness. The proof of the uniqueness of the positive and negative so-
lution for problem (3.1) is completely analogous to one of Theorem 2, and is
omitted. This completes the proof of the theorem. 0O

Math. Model. Anal., 30(4):583-603, 2025.
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4 Multiplicity

In this section, we consider the multiplicity of one-signed solutions to the fol-
lowing singular problem

V(0) =0, v(R)=0,

where ¢(s) := s/vV1—s2,1 <k <N, H;, € C((—R, R)x[0, R]) may be singular
at v = £R satisfying (—1)*Hy,(v,7) > 0 for all (v,7) € (—R, R) x [0, R].

4.1 k is odd

Now we use the Leggett-Williams fixed point theorem to establish the multi-
plicity of positive solutions for problem (4.1).

Theorem 5. Let k be an odd number. Assume that there exist constants a, b, ¢, d
and n with 0 < a <b < #d <d < c < R such that

(Cs) [Hy(v, )] < gz d* (%) for all (v,r) € [0,a] x [0, R];
(Cy) |Hp(v,r)| < %(ﬁk (ﬁ) for all (v,r) € 10,¢| x [0, R];

RN—k

(Cs) [Hi(0,7)] = o0 (b/n) for all (v,7) € [b,d] x [0, R = n;

(Co) (R—n)™ ming, < j0,r—n) | H(v,7)] > RN ¢* (%) max(o ¢ x [o,r] [Hk(v,7)].
Then, problem (4.1) has at least three positive solutions vi,ve,vs satisfying

b i ith i b. 4.2
loal <o b< min va(r). fusll > a with min () <b (42)

Proof. Firstly, we define a nonlinear operator A on P N Bg by

(Av)(r) = —/TR¢>‘1<(t$[_k /OtTN—lHk(v(T),T)dT)l/k> dt. (4.3)

Then, A is well defined. Evidently, (Av)(r) > 0 and (Av)'(r) > 0 for all
r € [0, R], which imply A(P N Br) C P. Furthermore, (Av)(R) = 0 and
(Av)'(0) = 0. By the standard argument and using the Arzela-Ascoli theorem,
we find that A is compact on PN B,(p € (0, R)). It is easy to verify that v is
a positive solution of problem (4.1) if and only if v € PN By is a fixed point
of A.

Let o : P — [0,+00) be a nonnegative continuous concave functional de-
fined by

a(v) = min o(r), YveP.
(v) = min_o(r)

Then, a(v) < |jv||, v € P and

a(w)=v(R-mn), ofldv)=(Av)(R-7n), Yv€EP. (4.4)
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Next, we will distinguish the proof into three steps.
Step 1. Since ¢! is odd, (C4) and (4.3), for all v € P, we have

o =[5 (e [Pt miar) ™ Ja
< [ (% [P ot (5) an) o<

Hence, A(P.) C P,.. Similarly, we can get ||Av|| < a for all v € P, by (Cs),
which implies that the condition (ii) of Lemma 2 holds.

Step 2. Let v = (b+d)/2, then v € P, ||v|| < d and a(v) = (b+d)/2 > b,
which show that {v € P(«,b,d) : a(v) > b} # 0. We also let v € P(a,b,d),
then a(v) > b and |jv|| < d, ie., b <wv(r) <dfor all r € [0, R — n]. It follows
from the oddness of ¢~1, (4.4) and (Cs) that

a(Av) = /RRfl((tz\i\ik /()tTNlHk(v(T),T)d7>l/k>dt
- /RRfl ((tf\jka N1|Hk(U(T),T)IdT)1/k>dt
- ( N

/R
o (G [ et ()
> o™ (6 (b/n)) = b

Hence, the condition (i) of Lemma 2 is satisfied.
Step 3. We check that the condition (iii) of Lemma 2 holds. Notice that
for all v € P(a,b,c), we have b < v(r) < ¢ for r € [0, R — 7], and so

|| A _/OR¢1((t]£\ik /OtTN1Hk(v(7'),7')|d7)1/k)dt

R t
N 1/k
< -1 N—1 (45)
_/0¢ ((tN—’f/oT o 2y 07l )dt

-1 1/k
< R¢ (R([O7CI]I1<a[%(7R]|Hk(U,T)|) )

-1

Since
¢_1(8182) > ¢_1(81)¢_1(82>7 Vs1,82 € [0, +OO>, (46)
it follows from (4.5) and (Cg) that for all v € P(a, b, ¢) with || Av|| > d,

a(Av) = —/RR;b—l((tjéVk /OtTN—lﬂk(u(T),T)dT) l/k)dt

1/k
/ <( / N-1  mip \Hk(v,7)|d7> )dt
. [b,c]X[0,R—n]
) o 1/k q
/ <( RNk [bcg[lgr}{ n]l k(w)l) )t

Math. Model. Anal., 30(4):583-603, 2025.


https://doi.org/10.3846/mma.2025.23218

M. Liu, M. Pei and L. Wang

f(r i (RD 1/k
> ng <(R¢ (nd)[o,i?ﬁé‘,m’H’“(””)’) >

Rb 4 1/k b
>—*R( H) > 2 Av|| > b.
2o (R( max en)) ) 2 Sl
In conclusion, all the conditions of Lemma 2 are satisfied, and thus the singular
problem (4.1) has at least three positive solutions v, va, v satisfying (4.2). This
completes the proof of the theorem. 0O

Remark 2. Let k be an odd number. Assume that there exist constants b, d and
n with 0 < b < #d < d < R such that all the conditions in Theorem 5 hold,
except that (C3) and (Cy4) are replaced by

T [Hi(wr)] _ 1.
(C3) lim DA%k (oR) < T

N T |Hy (v,r)|
(Ca) Tl max L)

1
< Rjr-

Then, the conclusion of Theorem 5 is still true. In fact, we point out that (Cs)
is to show that (i) of Lemma 2, and (Cy) is used to verify A(P.) C P.. It is
easy to see that the condition (C%) implies that (Cs) holds, then the condition
(ii) of Lemma 2 holds. Hence, we only need to show that A(P.) C P. when

(C,) holds. It follows from (C}) that there exist p € (0,1/RF) and 6 € (0, R)
such that

|Hi(v,7)| < M + p¢"* (v/R), Y(v,r) €[0,R) x [0, R],

where M = max{|Hy(v,7)| : (v,r) € [0,8]x[0, R]}. We now choose the constant

¢ such that .
max {d, R¢‘1(R<1 —]\iRk)k)} <c¢<R

Then, for all v € P,., we have

ot =[5 (s [P steto)far)
S/Oqu‘l((t]in /OtTN_l(M-i-quk (c/R))dT)l/k>dt

<Ry (R(M + po* (cR) ) w) <e.

This implies A(P.) C P..

Remark 3. In Theorem 5, the hypothesis condition (Cg) is unnecessary provided
d=c.

Remark 4. If (=1)*Hy(v,r) > 0 for all (v,r) € (=R, R) x [0, R] in problem
(4.1), the three positive solutions of Theorem 5 are nonnegative.
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4.2 k is even

Similar to the case that k is an odd number, we now present the multiplicity
of positive and negative solutions of problem (4.1) when & is an even number.

Theorem 6. Let k be an even number. Assume that there exist constants
a,b,c,d and n with 0 < a <b < $d <d < c< R such that

(Cs) Hi(v,r) < gx ¥ (%) for all (v,r) € [~a,a] x [0, R];

(Cs) Hi(v,7) < gx ¥ (&) for all (v,r) € [—c,c] x [0, R];

(Cs) Hi(v,7) = iy d" (b/n) for all (v,7) € ([=d,=b] U [b,d]) x [0, R —n];

(Co) (R=m)™ mingu pyep Hy(v,7) = RYOF (E5) max(_e.o o, Hi(v,7), where
D = ([-¢,=bUIb,c]) x [0, R — 7].

Then, there exist at least siz solutions to problem (4.1), three of which are
positive solutions vy, va,v3 satisfying

vl <a, b< min wvs(r), vgl| > a with min wvs(r) < b, 4.7
o Jmin va(), s Jmin_ () (47)

and the other three are negative solutions vy, vs, ve satisfying

<a, —-b> , > ith > —b. 4.8
Jeall < a amax vs(r), vl > a with max vs(r) (4.8)

Furthermore, if Hi(v,7) = Hg(—v,r) for all (v,7) € (—R, R) x [0, R],
v1(r) = —va(r), wva(r) = —vs(r), ws(r)=—ve(r), Vrel0,R].
Proof. We first consider the multiplicity of positive solutions. Let
Pt ={v € C[0,R] : v(r) is nonnegative and nonincreasing on [0, R]} .

Then, PT is a cone in C[0, R]. We define the nonlinear operator A* on PTNBg

b
e [ (% [ peternar) ™Y,

then, AT is well defined. Exactly analogous to the proof of Theorem 5, we
can easily prove that there exist at least three positive solutions vy, v, v3 to
problem (4.1) satisfying (4.7).

Next, we consider the multiplicity of negative solutions. Let

P~ ={v € C[0,R] : v(r) is nonpositive and nondecreasing on [0, R] } ,

then, P~ is a cone in C[0, R]. We define the operator A~ on P~ N Br by

(A=v)(r) = —/TR¢—1<(#\J,\; /OtTN*Hk(v(T),T)dT)W> a. (4.9)
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It is easy to see that A~ is well defined. Clearly, for each v € P~ N Bp,
(A~v)(r) < 0and (A~ v)'(r) > 0 when r € [0, R], which imply A~ (P~ NBg) C
P~. Moreover, (A~v)(R) = 0 and (A7v)'(0) = 0. Using the Arzela-Ascoli
theorem, we can show that A~ is compact on P~ NB,(p € (0, R)). Meanwhile,
it is easy to know that v is a negative solution to problem (4.1) if and only if
v is a fixed point of A~. Let §: P~ — [0,+00) be a nonnegative continuous
concave functional defined by

= — , Yve P .
B(v) reg{ﬁggn]v(r) v

It follows that S(v) < ||v||, v € P~ and
Bv)=—-v(R—n), B(A v)=—(A"v)(R-n), YveP . (4.10)

Next, we will split the proof into three steps.
Step 1. We prove |A7v|| < a for all v € P, . From (C3) and (4.9), for all
v € P, , we have

A= /RQSI((tJ\]f\Zk /tTNlHk(v(T),T)de/k)dt
/¢ ( tN=- k/ T 71%& (a/R)dT>1/k>dt<a,

which implies that the condition (ii) of Lemma 2 holds. Similarly, we can
deduce A= (P;) C P: by (Cy).

Step 2. Let v = —(b+d)/2,thenv € P~, ||v|| < d and B(v) = (b+d)/2 > b,
which show that {v € P~(B,b,d) : B(v) > b} # (. We also let v € P~ (3,b,d),
then B(v) > band ||v| <d,ie., —d <wv(r) < —bfor all r € [0, R—n]. It follows
from (4.10) and (Cs) that for all v € P~(8,b,d),

B(A=v) = /::51 ((tNAfk /OtTNlHk(v(T),T)dT>1/k>dt
oo (G [ et e )

n

> /}i o~ (@ (b/m)) at =o.

n

Hence, the condition (i) of Lemma 2 is satisfied.
Step 3. We show that the condition (iii) of Lemma 2 holds. Notice that
for all v € P~(5,b, ¢), we have —c < v(r) < =b for r € [0, R — 7], and so

R N t 1/k
4ol = [Co7 (e [ 7 ot mar) " ar
0 0
R N t l/k
< —1 N—-1 H
_/0 10) ((tNk/OT Fa%}i)[(o,}{] k(’U,T)dT) )dt
1/k
<Ry 'R H )
<o (e, 1i0m) ")
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It follows from (4.6) and (Cg), when v € P~(B,b,¢) with [|[A~v| > d, we
can obtain

B R N t 1/k
B(A v):/R o 1<(tN’“/OTN 1Hk(v(7'),7')d7'> )dt
-n
R N R—n 1/k
> -1 N-1 : H
2 [ (G [ 7 i o)
R N
- R—17) . 1/k
> (B m” H dt
> [ (e i, o))

Rb 1/k
> -1 k k[ 2% H
> ot ((rot (57) e o))

b K\ b
>nR¢—1<R([ max Hk(v,T)) >>d||A_v|| > b.

nd —¢,0]x[0,R]

In summary, all the conditions of Lemma 2 are satified. Thus, the prob-
lem (4.1) has at least three negative solutions vy, vs,vs satisfying (4.8). This
completes the proof of the theorem. 0O

Remark 5. Let k be an even number. Assume that there exist constants b, d
and 7 with 0 < b < %d < d < R such that all the conditions in Theorem 6
hold, except that (C3) and (Cy4) are replaced by

(Cy) Tim max el o

1.
v—0re[0.R) ®F(v/R) R

=/ — Hy, (v,r) 1
(Co) i 2% ororm) < 7

Then, the conclusion of Theorem 6 is still true.

Remark 6. In Theorem 6, the hypothesis condition (Cg) is unnecessary provided
d=c

Remark 7. 1f (=1)*Hy(v,7) > 0 for all (v,7) € (=R, R) x [0, R] in problem
(4.1), the three positive solutions of Theorem 6 are nonnegative and the three
negative solutions of Theorem 6 are nonpositive.

5 Some examples

In this section, we demonstrate the importance of our results through some
illustrative examples.

Ezample 1. Consider the nonlinear singular problem with the prescribed k-th
mean curvature operator in Minkowski space

(Mk’l})(?”) = (_1)k (r‘ll (Rfr)ﬁlyp + rdz(%)jr)ﬂz + ru:;(RC_T)Bg) , T E (O7R)a
v'(0) =0, v(R) =0,
(5.1)
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where 1 <k < N,a>0,bc>0,p,qg>0and o;,0; €1[0,1),1=1,2,3.
The following is divided into two cases to discuss.
Case 1. k is an odd number. We define

a 3 blv|4 3 c
rer(R—r)Pijplp re2(R—r)f2 pes(R—r)bs
for (v,r) € ((—00,0) U (0,+00)) x (0, R). We consider the following modified

singular problem

k= (PN TRGR () = Hy(v,7), 7€ (0,R),
v'(0) =0, wv(R)=0.

Hy(v,r) = —

(5.1%)

It’s not difficult to verify that for all § € (0, R),

R
max_|Hy(v,r)|dr < +o0.
o O<v<R

Thus, from Theorem 1, the modified problem (5.1*) has at least one positive
solution. This implies that the problem (5.1) has at least one positive solution.

Note that the model (5.1) take the model examples in [25,26] as special
cases when k = 1.

Case 2. £k is an even number and p, ¢ are even. Let

a bv? c

H =
k(vvr) roa (R _ 7“)’81’()]) + o2 (R _ 7")’82 + 7“("3(R — r)ﬂa

for (v,7) € ((—00,0) U (0,+00)) x (0, R). Similar to Case 1, we can show that
for all § € (0, R),

R
/ max Hy(v,r)dr < 4+oo.
0 I<|ISR

Therefore, from Theorem 3, there exist at least two solutions to problem (5.1),
one of which is positive and the other is negative.

Ezample 2. Consider the nonlinear singular problem with the prescribed k-th
mean curvature operator in Minkowski space

_ a _ b
{ (Mkv)(r) - T"‘I(Rfr)ﬁl P rog (R,T)Bz ’ re (03 R)7 (52)

V(0) =0, w(R)=0,

where 1 < k < N is an odd number, a > 0, b > 0, p > 0 and «;, 5; € [0,1),
1=1,2.

Let
a b

roev(R—r)Bifulp  roz(R —r)P2
for (v,r) € ((—00,0) U (0,4+00)) x (0, R). Considering the following modified
singular problem

= (PN TRGR () = Hy(v,7), 7€ (0,R),
v'(0) =0, wv(R)=0.

Hy(v,r) = —

(5.2%)
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It is easy to verify that for all 6 € (0, R), we have

R
max_|H(v,7)|dr < +oo.
o 6<v<R
Furthermore, it is easy to see that for fixed r € (0, R), Hy(v, ) is nondecreasing
with respect to v € (0,R), and thus by Theorem 2, there exists a unique
positive solution to modified problem (5.2*). Therefore, problem (5.2) has a
unique positive solution.

Ezample 3. Consider the nonlinear singular problem with the prescribed k-th
mean curvature operator in Minkowski space

—ur v c
(Mk;v)(r) = Ta;l(ARjr)Bl + rag (II)%*T‘)BQ + ras (R*T)ﬁi’t’ re (O7R), (53)
v'(0) =0, v(R)=0,

where 1 < k < N is an even number, A > 1, a > 0, b,c > 0, p,q are two even
numbers and «;, §; € [0,1), i =1,2,3.
Let

_1
a\” vp bv? c

roi(R —r)h + ro2(R —r)P2 + ras(R —r)Ps

Hy(v,r) =
for (v,r) € ((—00,0) U (0,+00)) x (0, R). Then for all 6 € (0, R), we have

R

/ max Hy(v,r)dr < +o0.
0 S<[vI<R

Meanwhile, for each fixed r € (0, R), Hy(v,r) is nondecreasing with respect to

v € (0, R) and nonincreasing with respect to v € (—R,0). Thus by Theorem 4,

the problem (5.3) has a unique positive solution and a unique negative solution.

Ezample 4. Consider the nonlinear singular problem with the prescribed k-th
mean curvature operator in Minkowski space

(Myv)(r) = (=1)F 20 e (0, R),
{ v'(0) =0, wv(R) :(}S, ) (5.4)

where 1 <k < N,p>k, u(-) € C([0, R],(0,+00)), A>0and 0 < ¢ < k/2.
The following is divided into two cases to discuss.
Case 1. k is an odd number. We select b,n € (0, R) with b < 7). Let

_Aulr)[ol?

Hy(v,r) = (R—v)’

(v,7) € (=R, R) x [0, R].
A simple computation leads that

lim max | H (v, 7)| =0 and lim max | Hs (v, 7)] = 0.

v—0+ r€[0.R] ¢F (v/R) v—R-re0.R] ¢* (v/R)
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So we can choose a € (0,b) and ¢ = d € (b, R) with Rb < nc such that (Cs)
N—k(p_ k

and (Cy) hold. Let A = R M(b}g(lgzj;lv(b/m, where M = max, ¢,z p(r). Then

for A > A, we have

RN"F(R —b)1¢" (b MuP
MbrP(R — ) (R—v)4
_RYTRGE(b/n)
— (R=mp)N
This implies (Cs) holds. Hence by Remark 2-4, when A\ > A, the modified
problem

Y(v,r) € [b,d] x [0, R — 7).

=T (rN*kqi)k(v’))/ = Hy(v,7), 7€ (0,R),
v'(0)=0, wv(R)=0

has at least three nonnegative solutions vy, ve,vs. Therefore, the problem (5.4)
has three nonnegative solutions vy, v9, v3 provided A is sufficiently large.

Note that the problem (5.4) take the model example in [24] as special case
when k = 1.

Case 2. k is an even number and p is even. We select b,n € (0, R) with
b <mn. Let

Ap(r)vP
Hi(v,r) = (R(_)U)q, (v,r) € (=R, R) x [0, R].
Then we can deduce that
mmaxwzo and lim maXM:O
v—=0re[0,R] @k (’U/R) lv|= R~ re[0,R] ¢F (’U/R)

Thus, there exist a € (0,b) and ¢ = d € (b, R) with Rb < ne such that (C3) and

(C4) hold. Let A = RN_A;(lﬁ?g)_qgjv(b/n). Then, for A > A, we have

RN=F gk (b/n)
(R—m)N 7

Hy(v,r) > V(v,r) € ([—d, =b] U [b,d]) x [0,R — n].

This shows that (Cs) holds. It follows from Remarks 5-7 that the problem
(5.4) has at least three nonnegative solutions and three nonpositive solutions
provided A is sufficiently large.
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