One-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime
DOI: https://doi.org/10.3846/mma.2025.23218Abstract
We investigate the existence, uniqueness and multiplicity of one-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime. The main tools are the Schauder fixed point theorem along with cut-off technique and the Leggett-Williams fixed point theorem. In addition, we give some practical models to illustrate the effectiveness of our results.
Keywords:
higher mean curvature operator, Minkowski spacetime, singular Dirichlet problem, one-signed rotationally symmetric solutionsHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
P. Bayard. Dirichlet problem for spacelike hypersurfaces with prescribed scalar curvature in Rn,1. Calc. Var. Partial Diferential Equations, 18:1–30, 2003. https://doi.org/10.1007/s00526-002-0178-5
P. Bayard and F. Delanoè. Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(3):903–915, 2009. https://doi.org/10.1016/j.anihpc.2008.03.008
C. Bereanu, P. Jebelean and J. Mawhin. Radial solutions for Neumann problems with ϕ-Laplacian and pendulum-like nonlinearities. Discrete Contin. Dyn. Syst., 28(2):637–648, 2010. https://doi.org/10.3934/dcds.2010.28.637
C. Bereanu, P. Jebelean and P.J. Torres. Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal., 265(4):644–659, 2013. https://doi.org/10.1016/j.jfa.2013.04.006
C. Bereanu and J. Mawhin. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian. J. Differential Equations, 243(2):536–557, 2007. https://doi.org/10.1016/j.jde.2007.05.014
T. Cheng and X. Xu. Existence of positive solutions for one dimensional Minkowski curvature problem with singularity. J. Fixed Point Theory Appl., 25:72, 2023. https://doi.org/10.1007/s11784-023-01076-6
I. Coelho, C. Corsato, F. Obersnel and P. Omari. Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud., 12(3):621–638, 2012. https://doi.org/10.1515/ans-2012-0310
C. Corsato, F. Obersnel, P. Omari and S. Rivetti. Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl., 405:227–239, 2013. https://doi.org/10.1016/j.jmaa.2013.04.003
G. Dai, A. Romero and P.J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain Friedmann-Lemaître-RobertsonWalker spacetimes. J. Differential Equations, 264(12):7242–7269, 2018. https://doi.org/10.1016/j.jde.2018.02.014
G. Dai, A. Romero and P.J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes. Discrete Contin. Dyn. Syst. Ser. S, 13(11):3047–3071, 2020. https://doi.org/10.3934/dcdss.2020118
D. de la Fuente, A. Romero and P.J. Torres. Existence and extendibility of rotationally symmetric graphs with a prescribed higher mean curvature function in Euclidean and Minkowski spaces. J. Math. Anal. Appl., 446(1):1046–1059, 2017. https://doi.org/10.1016/j.jmaa.2016.09.022
K. Deimling. Nonlinear Functional Analysis. Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7
F. Delanoè. The Dirichlet problem for an equation of given Lorentz-Gauss curvature. Ukrainian Math. J., 42:1538–1545, 1990. https://doi.org/10.1007/BF01060827
C. Gerhardt. Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds. J. Reine Angew. Math., 554:157–199, 2003. https://doi.org/10.1515/crll.2003.003
S.Y. Huang. Classification and evolution of bifurcation curves for the onedimensional Minkowski-curvature problem and its applications. J. Differential Equations, 164(9):5977–6011, 2018. https://doi.org/10.1016/j.jde.2018.01.021
Y. Huang. Curvature estimates of hypersurfaces in the Minkowski space. Chin. Ann.Math.Ser.B,34:753–764,2013. https://doi.org/10.1007/s11401-013-0789-5
N.M. Ivochkina. Solution of the Dirichlet problem for curvature equations of order m. Math. USSR Sbornik, 67:317–339, 1990. https://doi.org/10.1070/SM1990v067n02ABEH002089
Y.H. Lee, I. Sim and R. Yang. Bifurcation and Calabi-Bernstein type asymptotic property of solutions for the one-dimensional Minkowskicurvature equation. J. Math. Anal. Appl., 507(1):125725, 2022. https://doi.org/10.1016/j.jmaa.2021.125725
R.W. Leggett and L.R. Williams. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J., 28:673–688, 1979. https://doi.org/10.1512/iumj.1979.28.28046
A.M. Li. Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space. Arch. Math., 64:534–551, 1995. https://doi.org/10.1007/BF01195136
R. Ma and M. Xu. Positive rotationally symmetric solutions for a Dirichlet problem involving the higher mean curvature operator in Minkowski space. J. Math. Anal. Appl., 460:33–46, 2018. https://doi.org/10.1016/j.jmaa.2017.11.049
R. Ma, M. Xu and Z. He. Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator. J. Math. Anal. Appl., 484:123728, 2020. https://doi.org/10.1016/j.jmaa.2019.123728
R. Ma, Z. Zhao and X. Su. Global structure of positive and sign-changing periodic solutions for the equations with Minkowshi-curvature operator. Adv. Nonlinear Stud., 24:775–792, 2024. https://doi.org/10.1515/ans-2023-0130
M. Pei and L. Wang. Multiplicity of positive radial solutions of a singular mean curvature equations in Minkowski space. Appl. Math. Lett., 60:50–55, 2016. https://doi.org/10.1016/j.aml.2016.04.001
M. Pei and L. Wang. Positive radial solutions of a mean curvature equation in Minkowshi soace with strong singularity. Proc. Amer. Math. Soc., 145:4423– 4430, 2017. https://doi.org/10.1090/proc/13587
M. Pei and L. Wang. Positive radial solutions of a mean curvature equation in Lorentz-Minkowski space with strong singularity. Appl. Anal., 99:1631–1637, 2020. https://doi.org/10.1080/00036811.2018.1555322
C. Ren, Z. Wang and L. Xiao. The convexity of entire spacelike hypersurfaces with constant σn−1 curvature in Minkowski space. J. Geom. Anal., 34:189, 2024. https://doi.org/10.1007/s12220-024-01630-9
C. Ren, Z. Wang and L. Xiao. The prescribed curvature problem for entire hypersurfaces in Minkowski space. Anal. PDE, 17:1–40, 2024. https://doi.org/10.2140/apde.2024.17.1
J. Urbas. The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space. Calc. Var. Partial Differential Equations., 18:307–316, 2003. https://doi.org/10.1007/s00526-003-0206-0
J. Urbas. Interior curvature bounds for spacelike hypersurfaces of prescribed k-th mean curvature. Comm. Anal. Geom., 11(2):235–261, 2003. https://doi.org/10.4310/CAG.2003.v11.n2.a4
M. Xu. Rotationally symmetric solutions of the prescribed higher mean curvature spacelike equations in Minkowski spacetime. Bull. Korean Math. Soc., 61:29–44, 2024.
R. Yang, Y.H. Lee and I. Sim. Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain. J. Differential Equations, 268:4464–4490, 2020. https://doi.org/10.1016/j.jde.2019.10.035
R. Yang, I. Sim and Y.H. Lee. π/4-tangentiality of solutions for one-dimensional Minkowski-curvature problems. Adv. Nonlinear Anal., 9(8):1463–1479, 2020. https://doi.org/10.1515/anona-2020-0061
F. Ye, S. Yu and C.L. Tang. Global bifurcation of one-signed radial solutions for Minkowski-curvature equations involving indefinite weight and non-differentiable nonlinearities. J. Math. Anal. Appl., 540:128583, 2024. https://doi.org/10.1016/j.jmaa.2024.128583
X. Zhang and M. Feng. Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space. Commun. Contemp. Math., 21(3):1850003, 2019. https://doi.org/10.1142/S0219199718500037
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.