Some properties of solutions of α-conformable differential equations with piecewise constant arguments: existence and uniqueness, asymptotic stability, oscillation and periodicity

DOI: https://doi.org/10.3846/mma.2025.22406

Abstract

Conformable differential equations, based on the recently introduced conformable derivative, represent a novel and increasingly popular class of differential equations. This framework offers significant advantages over traditional models, particularly due to its simplicity and enhanced flexibility in modeling diverse phenomena. In this paper, we examine conformable differential equations with piecewise constant arguments. We establish the existence and uniqueness of solutions for these equations and derive conditions for oscillatory behavior, convergence, and periodicity. Additionally, we provide numerical examples to support and illustrate the theoretical results.

Keywords:

Conformable derivative,, piecewise constant arguments, oscillatory solution, convergency, periodic solution

How to Cite

Bereketoglu, H., Al Obaidi, H., Kavgaci, M. E., & Oztepe, G. S. (2025). Some properties of solutions of α-conformable differential equations with piecewise constant arguments: existence and uniqueness, asymptotic stability, oscillation and periodicity. Mathematical Modelling and Analysis, 30(3), 461–479. https://doi.org/10.3846/mma.2025.22406

Share

Published in Issue
July 3, 2025
Abstract Views
17

References

T. Abdeljawad. On conformable fractional calculus. J. Comput. Appl. Math., 279:57–66, 2015. https://doi.org/10.1016/j.cam.2014.10.016

A.R. Aftabizadeh, J. Wiener and J.M. Xu. Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Amer. Math. Soc., 99:673–679, 1987. https://doi.org/10.2307/2046474

M. Akhmet, D.A. C¸inc¸in, M. Tleubergenova and Z. Nugayeva. Unpredictable oscillations for Hopfield-type neural networks with delayed and advanced arguments. Mathematics, 9(5):571, 2021. https://doi.org/10.3390/math9050571

M.U. Akhmet. Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal., 68(4):794–803, 2008. https://doi.org/10.1016/j.na.2006.11.037

M.L. Büyükkahraman. Existence of periodic solutions to a certain impulsive differential equation with piecewise constant arguments. Eurasian Math. J., 13(4):54–60, 2022. https://doi.org/10.32523/2077-9879-2022-13-4-54-60

F. Cavalli and A. Naimzada. A multiscale time model with piecewise constant argument for a boundedly rational monopolist. J. Difference Equ. Appl., 22(10):1480–1489, 2016. https://doi.org/10.1080/10236198.2016.1202940

K.L. Cooke and I. Györi. Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments. Comput. Math. Appl., 28(1-3):81–92, 1994. https://doi.org/10.1016/0898-1221(94)00095-6

K.L. Cooke and J. Wiener. Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl., 99(1):265–297, 1984. https://doi.org/10.1016/0022-247X(84)90248-8

L. Dai and M.C. Singh. On oscillatory motion of spring-mass systems subjected to piecewise constant forces. J. Sound Vibration, 173(2):217–231, 1994. https://doi.org/10.1006/jsvi.1994.1227

S. Elaydi. An Introduction to Difference Equations. Springer New York, NY, USA, 2005. ISBN 978-1-4757-9168-6.

A. Elsonbaty, Z. Sabir, R. Ramaswamy and W. Adel. Dynamical analysis of a novel discrete fractional SITRS model for COVID-19. Fractals, 29(08):2140035, 2021. https://doi.org/10.1142/S0218348X21400351

F. Gurcan, N. Kartal and S. Kartal. Bifurcation and chaos in a fractionalorder cournot duopoly game model on scale-free networks. Int. J. Bifurc. Chaos, 34(08):2450103, 2024. https://doi.org/10.1142/S0218127424501037

F. Gurcan, G. Kaya and S. Kartal. Conformable fractional order Lotka–Volterra predator–prey model: Discretization, stability and bifurcation. J. Comput. Nonlinear Dynam., 14(11):111007, 2019. https://doi.org/10.1115/1.4044313

K. Hosseini, K. Sadri, M. Mirzazadeh, S. Salahshour, C. Park and J. R.Lee. The guava model involving the conformable derivative and its mathematical analysis. Fractals, 30(10):2240195, 2022. https://doi.org/10.1142/S0218348X22401958

F. Karakoc¸. Asymptotic behaviour of a population model with piecewise constant argument. Appl. Math. Lett., 70:7–13, 2017. https://doi.org/10.1016/j.aml.2017.02.014

N. Kartal. Multiple bifurcations and chaos control in a coupled network of discrete fractional order predator–prey system. Iran J. Sci., 49:93–106, 2025. https://doi.org/10.1007/s40995-024-01665-1

N. Kartal and S. Kartal. Complex dynamics of COVID-19 mathematical model on Erdo˝s–R´enyi network. Int. J. Biomath., 16(05):2250110, 2023. https://doi.org/10.1142/S1793524522501108

S. Kartal. Flip and Neimark–Sacker bifurcation in a differential equation with piecewise constant arguments model. J. Difference Equ. Appl., 23(4):763–778, 2017. https://doi.org/10.1080/10236198.2016.1277214

S. Kartal. Multiple bifurcations in an early brain tumor model with piecewise constant arguments. Int. J. Biomath., 11(04):1850055, 2018. https://doi.org/10.1142/S1793524518500559

S. Kartal. Caputo and conformable fractional order guava model for biological pest control: Discretization, stability and bifurcation. J. Comput. Nonlinear Dynam., 18(12):121002, 2023. https://doi.org/10.1115/1.4063555

S. Kartal and F. Gurcan. Discretization of conformable fractional differential equations by a piecewise constant approximation. Int. J. Comput. Math., 96(9):1849–1860, 2019. https://doi.org/10.1080/00207160.2018.1536782

S. Kartal, M. Kar, N. Kartal and F. Gurcan. Modelling and analysis of a phytoplankton–zooplankton system with continuous and discrete time. Math. Comput. Model. Dyn. Syst., 22(6):539–554, 2016. https://doi.org/10.1080/13873954.2016.1204323

M.E. Kavgaci, H. Al Obaidi and H. Bereketoglu. Some results on a firstorder neutral differential equation with piecewise constant mixed arguments. Period. Math. Hungar., 87(1):265–277, 2023. https://doi.org/10.1007/s10998-022-00512-3

G. Kaya, S. Kartal and F. Gurcan. Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm. Phys. A, 547:123864, 2020. https://doi.org/10.1016/j.physa.2019.123864

R. Khalil, M. Al Horani and M. A. Hammad. Geometric meaning of conformable derivative via fractional cords. J. Math. Comput. Sci., 19(4):241–245, 2019. https://doi.org/10.22436/JMCS.019.04.03

R. Khalil, M. Al Horani, A. Yousef and M. Sababheh. A new definition of fractional derivative. J. Comput. Appl. Math., 264:65–70, 2014. https://doi.org/10.1016/j.cam.2014.01.002

M.S. Khan, M. Ozair, T. Hussain and J.F. Gómez-Aguilar. Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19. Eur. Phys. J. Plus, 136:853, 2021. https://doi.org/10.1140/epjp/s13360-021-01862-6

L. Sadek. Stability of conformable linear infinite-dimensional systems. Int.J.Dyn. Control, 11:1276–1284, 2023. https://doi.org/10.1007/s40435-022-01061-w

L. Sadek, D. Baleanu, M.S. Abdo and W. Shatanawi. Introducing novel Θfractional operators: Advances in fractional calculus. J. King Saud Univ. Sci., 36(9):103352, 2024. https://doi.org/10.1016/j.jksus.2024.103352

E.Y. Salah, B. Sontakke, M.S. Abdo, W. Shatanawi, K. Abodayeh and M.D. Albalwi. Conformable fractional-order modeling and analysis of HIV/AIDS transmission dynamics. Int. J. Differ. Equ., 2024:1958622, 2024. https://doi.org/10.1155/2024/1958622

S.M. Shah and J. Wiener. Advanced differential equations with piecewise constant argument deviations. Int. J. Math. Math. Sci., 6(4):671–703, 1983. https://doi.org/10.1155/S0161171283000599

H. Thabet and S. Kendre. Conformable mathematical modeling of the COVID19 transmission dynamics: A more general study. Math. Methods Appl. Sci., 46(17):18126–18149, 2023. https://doi.org/10.1002/mma.9549

S. Wenxiao, X. Tao and L. Biwen. Exploration on robustness of exponentially global stability of recurrent neural networks with neutral terms and generalized piecewise constant arguments. Discrete Dyn. Nat. Soc., 2021(1):9941881, 2021. https://doi.org/10.1155/2021/9941881

J. Wiener. Generalized Solutions of Functional Differential Equations. World Scientific, Singapore, 1993. ISBN 978-981-02-1207-0.

Z. Yan and J. Gao. Numerical oscillation and non-oscillation analysis of the mixed type impulsive differential equation with piecewise constant arguments. Int. J. Comput. Math., 100(12):2251–2268, 2023. https://doi.org/10.1080/00207160.2023.2274277

F. Yousef, B. Semmar and K. Al Nasr. Incommensurate conformabletype three-dimensional Lotka–Volterra model: Discretization, stability, and bifurcation. Arab J. Basic Appl. Sci., 29(1):113–120, 2022. https://doi.org/10.1080/25765299.2022.2071524

C. Yu-Ming, S. Sultana, S. Rashid and M.S. Alharthi. Dynamical analysis of the stochastic COVID-19 model using piecewise differential equation technique. Comput. Model. Eng. Sci., 137(3):2427–2464, 2023. https://doi.org/10.32604/cmes.2023.028771

Q. Zhang and J. Shao. Lyapunov type inequalities for nonlinear fractional Hamiltonian systems in the frame of conformable derivatives. Math. Found. Comput., 7(3):284–296, 2024. https://doi.org/10.3934/mfc.2023004

View article in other formats

CrossMark check

CrossMark logo

Published

2025-07-03

Issue

Section

Articles

How to Cite

Bereketoglu, H., Al Obaidi, H., Kavgaci, M. E., & Oztepe, G. S. (2025). Some properties of solutions of α-conformable differential equations with piecewise constant arguments: existence and uniqueness, asymptotic stability, oscillation and periodicity. Mathematical Modelling and Analysis, 30(3), 461–479. https://doi.org/10.3846/mma.2025.22406

Share