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Abstract.Conformable differential equations, based on the recently

introduced conformable derivative, represent a novel and increas-

ingly popular class of differential equations. This framework offers

significant advantages over traditional models, particularly due to

its simplicity and enhanced flexibility in modeling diverse phenom-

ena. In this paper, we examine conformable differential equations

with piecewise constant arguments. We establish the existence and

uniqueness of solutions for these equations and derive conditions

for oscillatory behavior, convergence, and periodicity. Addition-

ally, we provide numerical examples to support and illustrate the

theoretical results.
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1 Introduction

Differential equations with piecewise constant arguments, abbreviated as DE-
PCA, emerge from efforts to extend the theory of functional differential equa-
tions with continuous arguments to accommodate equations with discontinuous
arguments. The appeal of these equations lies in their ability to describe hybrid
dynamic systems that integrate both continuous and discrete elements, thus
combining characteristics of differential and difference equations. As a result,
these equations exhibit greater complexity compared to standard differential
equations without piecewise arguments and additionally, they are generally
more challenging to analyze.
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Research studies on DEPCA were first put forward by Shah and Wiener
in 1983 [31]. Then Cooke and Wiener studied DEPCA with time delay in
their work [8] and in 1993 a distinguished book was written by Wiener [34].
Numerous studies have addressed various aspects of these equations, including
stability [4,33]; the existence of periodic solutions [5]; oscillation [3,23,35], etc.

It is well known that delay terms play a crucial role in mathematical model-
ing, capturing the inherent time lag between an action and its observed effect in
real-world processes. The connection between piecewise constant and delay ar-
guments is well established—while delay differential equations use continuous
delays like x(t − τ) with τ > 0, DEPCA employs piecewise constant argu-
ments, such as x([t]) where [t] is a stepwise function (e.g., the floor or ceiling of
t), resulting in a hybrid discrete-continuous structure. That connection makes
piecewise constant arguments one of the main tools of mathematical modelling.
As shown in [7], DEPCA can approximate solutions of delay differential equa-
tions with discrete delays. This approach first replaces the delay differential
equation with a DEPCA, which is then simplified into a difference equation.
Researchers have studied several properties of DEPCA in view of this approach.
For example, in [22], a phytoplankton-zooplankton system was modeled using
DEPCA. After deriving theoretical results, the Neimark–Sacker bifurcation was
analyzed to explain plankton bloom dynamics and determine threshold values
for periodicity. Then in [18], the author studied a DEPCA model for bacterial
population density in a microcosm and, using the center manifold theorem and
bifurcation theory, demonstrated flip and Neimark–Sacker bifurcations. An
early brain tumor growth modelled by DEPCA was studied in [19]. There ex-
ist also more applications in the literature using DEPCA such as population
models [15]; epidemic diseases [27,37]; spring-mass systems [9] and economical
models [6].

The conformable derivative has become an important mathematical tool
that provides a generalized framework for analyzing dynamical systems while
preserving many familiar properties of classical derivatives. It was introduced
by Khalil et al. in 2014 [26]. A limit form resembling the classical deriva-
tive is incorporated in this unique definition. The conformable derivative also
preserves many familiar properties of classical derivative such as linearity, the
mean value theorem, Rolle’s theorem, the product rule and the quotient rule.
Abdeljawad further advanced this idea by creating conformable versions of the
Gronwall inequality, chain rule, and partial integration formulas. Additionally,
in [1], he extended the conformable derivative framework to encompass power
series expansions and Laplace transforms. On the other hand, the geometric
aspects of conformable cords and conformable orthogonal trajectories can be
seen in [25]. This new type of derivative has attracted a great deal of interest
from scientists and has been the focus of multiple papers [11, 28, 38] and the
references therein. Its local nature and simplicity allow for easier computation
and interpretation, making it an attractive choice for problems that require
extensions of classical calculus while maintaining intuitive mathematical struc-
ture. The conformable derivative also offers flexibility in describing processes
with varying rates of change by introducing a parameter that adjusts the sen-
sitivity of the derivative. This adaptability makes the conformable derivative
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particularly useful for modeling systems with scale-dependent or non-uniform
behaviors, such as those found in biology, physics, and engineering [14,30,32].

Recently, there has been a growing interest in conformable differential equa-
tions with piecewise arguments. While numerous studies have been conducted
on this topic, it is not feasible to mention them all here. However, we can
highlight some notable works as follows: [13] analyzed the stability analysis,
Neimark–Sacker bifurcation and chaotic dynamics behavior of a conformable
order Lotka–Volterra predator-prey model by using a piecewise constant ap-
proximation. Subsequently, in [21], the stability and some bifurcations of the
corresponding difference equation of a conformable order DEPCA were ex-
amined. In [24], the population density of a species of bacteria in a micro-
cosm was modeled using conformable order DEPCA. Similarly, [36] consid-
ered the conformable-type three-dimensional Lotka–Volterra model with piece-
wise constant arguments. Moving forward, [17] examined a conformable order
Lotka–Volterra model for COVID-19 dynamics, transforming it into a differ-
ence equation using a piecewise constant approximation. Later, in 2023, Kartal
analyzed a two-species predator-prey model for guava borers using Caputo and
conformable derivatives, discretizing it with piecewise constant arguments to
study stability, Neimark–Sacker bifurcation, and complex dynamics like quasi-
periodicity and chaos [20]. In [30], an HIV/AIDS transmission model was
developed using a conformable derivative, and the complex behaviors of this
system were investigated. For further details, we also refer to [12,16,29], along
with the references therein.

The paper [8] by Cooke and Wiener is foundational to DEPCA theory,
introducing a novel approach for modeling systems with piecewise constant de-
lays. It extends classical differential equations by addressing delays that change
in discrete steps. This work has influenced fields like biology, engineering, and
economics. Additionally, as wee see from above studies, the conformable deriva-
tive, combined with piecewise constant arguments, provides a powerful tool for
modeling complex systems. In [8], the authors considered the equation

x′(t) = ax(t) + a0x([t]) + a1x([t− 1]). (1.1)

They obtained the unique solution on [0,∞) and provided conditions just for
asymptotic stability. Building on this work, the purpose of the present paper
is to investigate the same equation under the framework of the conformable
derivative, offering further insights into the dynamics of such systems.

In this paper, we consider

Dα
0 x(t) = ax(t) + a0x([t]) + a1x([t− 1]), t ≥ 0, (1.2)

with the initial conditions

x(−1) = c−1, x(0) = c0, (1.3)

where Dα
0 denotes the conformable derivative of x(t) with α ∈ (0, 1]; a, a0 and

a1 are real constants and [.] denotes the greatest integer function.
The next section presents the preliminaries, covering key definitions and

theorems relevant to the paper. Following that, the main results section ad-
dresses the existence and uniqueness of the given equation, along with periodic,
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asymptotically stable, and oscillatory solutions. Then, several examples that
illustrate the application of the theorems are given. Finally, the last section
provides the conclusion part.

2 Preliminaries

This section contains main tools for the paper.

Definition 1. ( [26]) The α-order conformable derivative of f : [0,∞) → R is
denoted by Dα

0 (f)(t) or f
(α)(t) and defined as

Dα
0 (f)(t) = lim

ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ

for all t > 0 and α ∈ (0, 1]. If f is α-order differentiable in some interval (0, δ),
δ > 0, and limt→0+ f (α)(t) exists, then

f (α)(0) = lim
t→0+

f (α)(t).

On the other hand, the conformable integral of a function f : [0,∞) → R is
defined by

Iα0 (f)(t) =

∫ t

0

sα−1f(s)ds,

where α ∈ (0, 1].

Definition 2. ( [1]) For a function f : [σ,∞) → R the α-order conformable
derivative can be defined as

Dα
σ (f)(t) = lim

ϵ→0

f(t+ ϵ(t− σ)1−α)− f(t)

ϵ
, t > σ,

where α ∈ (0, 1]. Also, the conformable integral of a function f : [σ,∞) → R is
defined as

Iασ (f)(t) =

∫ t

σ

(s− σ)α−1f(s)ds,

where α ∈ (0, 1].

These two definitions coincide with each other when σ = 0.
The following properties of conformable derivative are proved by Khalil et al.
in Theorem 2.2, [26]:
If f1 and f2 are α-order differentiable, α ∈ (0, 1], at a point t > 0, then

1. Dα
0 (af1 + bf2) = aDα

0 (f1) + bDα
0 (f2) for all a, b ∈ R;

2. Dα
0 (f1f2) = f1D

α
0 (f2) + f2D

α
0 (f1);

3. Dα
0

(
f1
f2

)
=

f2D
α
0 (f1)−f1D

α
0 (f2)

f2
2

;

4. If f is differentiable, then Dα
0 (f)(t) = t1−αf ′(t);
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5. If c is a constant, then Dα
0 (c) = 0.

Now, we give the following definitions:

Definition 3. A solution of the initial value problem (1.2)–(1.3) defined on
{−1} ∪ [0,∞) is a function x(t) that satisfies the following conditions:

(i) x(t) is continuous on [0,∞);

(ii) The α-conformable derivative of x(t) exists on [0,∞) with the possible
exception at the points [t] ∈ [0,∞) where one-sided derivatives exist;

(iii) x(t) satisfies Equation (1.2) on the each interval [n, n+ 1), n = 0, 1, ...;

(iv) x(t) satisfies the initial conditions (1.3).

Definition 4. A nontrivial solution of (1.2), say x(t), defined on the interval
[0,∞) is said to be oscillatory about zero if there exist two real valued sequences
(tn), (t̃n) ⊂ [0,∞) such that tn → ∞, t̃n → ∞ as n → ∞ and x(tn) x(t̃n) ≤ 0
for n ≥ N where N is sufficiently large. Otherwise it is called nonoscillatory.
Equation (1.2) is said to be oscillatory if all nontrivial solutions are oscilla-
tory; otherwise it is said to be nonoscillatory if its all nontrivial solutions are
nonoscillatory.

Before giving the main theorems, we need to remind some well-known results
about the second-order difference equation

xn+2 + p xn+1 + q xn = 0, n = −1, 0, 1, 2, ..., (2.1)

where p and q ̸= 0 are real constants. Solutions of (2.1) are supposed as in the
form λn, where λ is a complex number. Substituting this function into (2.1),
we get

λ2 + pλ+ q = 0, (2.2)

which is called the characteristic equation of (2.1). Roots of (2.2), say λ1 and
λ2, are in the form

λ1 =
1

2

(
− p+

√
p2 − 4q

)
and λ2 =

1

2

(
− p−

√
p2 − 4q

)
,

those are called characteristic roots. There are three cases to formulate the
general solution of (2.1):

Case 1. λ1 and λ2 are real and distinct. Then the linear independent
solutions of (2.1) are λn

1 and λn
2 . In this case, the general solution of (2.1) is

xn = k1λ
n
1 + k2λ

n
2 , where k1 and k2 are arbitrary constants.

Case 2. λ1 = λ2(= λ). Then the linear independent solutions of (2.1) are
λn and nλn. The general solution of (2.1) is

xn = (k1 + k2n)λ
n.

Case 3. λ1 = u+ iv and λ2 = u− iv (u and v ̸= 0 are real numbers ). Then
the real independent solutions are rn cosnθ and rn sinnθ where r =

√
u2 + v2

and θ = arctan v
u . In this case, the general solution is

xn = rn(k1 cosnθ + k2 sinnθ) or xn = Arn cos(nθ −B),

where A and B are arbitrary constants.

Math. Model. Anal., 30(3):461–479, 2025.
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Theorem 1. ( [10], p. 94) The following statements hold:

(A) All solutions of Equation (2.1) oscillate about zero if and only if the char-
acteristic equation (2.2) has no positive real roots.

(B) All solutions of Equation (2.1) converge to zero (i.e., the zero solution is
asymptotically stable) if and only if |λ1| < 1 and |λ2| < 1.

Because of Theorem 1, the following criterion can be stated in terms of the
coefficients p and q of Equation (2.1):

Theorem 2. Every solution of Equation (2.1) is oscillatory about zero if one
of the following conditions is satisfied:

(i) p > 0 and q = p2/4,

(ii) p > 0 and 0 < q < p2/4, (iii) q > p2/4.

Proof. It is clear that each case of (i), (ii) and (iii) implies that the charac-
teristic equation (2.2) has no positive real roots and so due to Theorem 1 (A)
all solutions of Equation (2.1) oscillate about zero. Indeed, for the roots λ1

and λ2 of Equation (2.2) we have the following findings, respectively:
λ1 = λ2 < 0 when (i) is true; λ1 and λ2 are distinct and negative real numbers
when (ii) is true and finally λ1 and λ2 are complex conjugate when (iii) is
satisfied. ⊓⊔

Theorem 3. ( [10], p.247, Schur-Cohn criterion) The necessary and sufficient
condition for the zero solution of Equation (2.1) to be asymptotically stable is

|p| < 1 + q < 2. (2.3)

3 Main Results

Our main results are given as follows:

Theorem 4. The the initial value problem (1.2)–(1.3) has a unique solution
x(t) defined on {−1} ∪ [0,∞).

Proof. We apply the method of steps to show the existence and uniqueness of
the solution of (1.2)–(1.3). Let x0(t) ≡ x(t) be a solution of (1.2)–(1.3) on the
interval 0 ≤ t < 1. Then Equation (1.2) reduces to

Dα
0 x(t) = ax(t) + a0x(0) + a1x(−1), 0 ≤ t < 1.

By the initial conditions (1.3), the equation above can take the form

Dα
0 x(t) = ax(t) + a0c0 + a1c−1, 0 ≤ t < 1. (3.1)

We can establish the general solution of Equation (3.1) for a ̸= 0 and a = 0,
separately. Firstly, consider the case a ̸= 0. The method for the general
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solution of Equation (3.1) mentioned in [ [26], page 69, Section 4] is almost
the same as the method of finding general solution of a nonhomogeneous linear
differential equation: Suppose λ is a number and that x(t) = eλt

α

is a solution
to the homogeneous equation Dα

0 x(t) = ax(t). Since

Dα
0 x(t) = Dα

0 e
λtα = t1−α

(
λαtα−1

)
eλt

α

= λαeλt
α

,

we see that the equation λαeλt
α

= aeλt or (λα− a) eλt
α

= 0 must be satisfied
in order for eλt

α

to be a solution. Thus if λ is any number satisfying λα− a =
0, then x(t) = eλt

α

is a solution to the homogeneous equation. Therefore
xh(t) = ce

a
α tα is the general solution of the homogeneous equation, where c

is an arbitrary constant. On the other hand, by the method of variation of
parameters, a particular solution of Equation (3.1) can be found as xp(t) =
− 1

a (a0c0 + a1c−1). Hence, we get the general solution of Equation (3.1) as

x(t) = ce
a
α tα − (a0c0 + a1c−1)/a, 0 ≤ t < 1, (3.2)

where c is an arbitrary constant. Applying the initial condition x(0) = c0,

c = c0 + (a0c0 + a1c−1)/a.

Substituting this value of c into (3.2), we have the solution

x(t) ≡ x0(t) =
(a0c0 + a1c−1

a

)
(−1 + ea

tα

α ) + c0e
a tα

α , 0 ≤ t < 1. (3.3)

Now, let x(t) ≡ x1(t) be a solution of (1.2)–(1.3) for t ∈ [1, 2). Then, Equa-
tion (1.2) reduces to the equation

Dα
1 x(t) = ax(t) + a0x(1) + a1x(0)

or
Dα

1 x(t) = ax(t) + a0c1 + a1c0, (3.4)

where c1=x(1). Again, by the method explained above, we have a general
solution for Equation (3.4) as

x(t) = ce
a
α (t−1)α − (a0c1 + a1c0)/a, 1 ≤ t < 2, (3.5)

where c is again an arbitrary constant. Applying c1 = x(1) to (3.5), we obtain

c = c1 + (a0c1 + a1c0)/a.

Putting this value of c into (3.5), we have

x(t) ≡ x1(t) =
(a0c1 + a1c0

a

)(
−1+ea

(t−1)α

α

)
+c1e

a
(t−1)α

α , 1 ≤ t < 2. (3.6)

By the continuity of x(t) at t = 1, from (3.3) and (3.6), we obtain

c1 =
(
− a0

a
+

a0
a
e

a
α + e

a
α

)
c0 +

a1
a
(−1 + e

a
α )c−1.

Math. Model. Anal., 30(3):461–479, 2025.
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Now, let x(t) ≡ xn(t) denote the solution of (1.2)–(1.3) on the interval n ≤ t <
n+ 1. Then, Equation (1.2) reduces to

Dα
nx(t) = ax(t) + a0x(n) + a1x(n− 1)

or
Dα

nx(t) = ax(t) + a0cn + a1cn−1, (3.7)

where cn = x(n) and cn−1 = x(n− 1).
Following the same way above, the solution of Equation (3.7) with cn = x(n)
can be found as

x(t) ≡ xn(t) =
(a0cn + a1cn−1

a

)(
−1+ea

(t−n)α

α

)
+cne

a
(t−n)α

α , n ≤ t < n+1.

(3.8)
Similarly, on the interval n+ 1 ≤ t < n+ 2, the solution of (1.2)–(1.3) has the
form

x(t) ≡ xn+1(t) =
(a0cn+1 + a1cn

a

)(
−1+ea

(t−n−1)α

α

)
+ cn+1e

a
(t−n−1)α

α . (3.9)

Because of the continuity of x(t) at t = n+ 1, it can be written

lim
t→(n+1)+

xn+1(t) = lim
t→(n+1)−

xn(t).

Therefore, from (3.8) and (3.9), we get the difference equation

cn+2 + pcn+1 + qcn = 0, n = −1, 0, 1, 2, ... (3.10)

with the initial conditions

c−1 = x(−1), c0 = x(0), (3.11)

where
p =

a0
a

−
(
1 +

a0
a

)
ea/α and q =

a1
a
(1− ea/α). (3.12)

We note that Equation (3.10) is a kind of linear homogeneous difference equa-
tion with constant coefficients. If a1 ̸= 0, then Equation (3.10) is a second
order difference equation. So, Equation (3.10) together with the initial con-

ditions (3.11) has a unique solution cn. If a1 = 0 and a0 ̸= aea/α

1−ea/α , then

Equation (3.10) reduces to the first order difference equation

cn+1 + pcn = 0, n = 0, 1, 2, . . . .

This equation with the initial condition c0 = x(0) has the unique solution

cn = (−p)nc0, n = 0, 1, 2, . . . .

Also, if a1 = 0 and a0 = aea/α

1−ea/α , then we have the unique solution cn = 0, n =

1, 2, . . . . Therefore, the solution x(t) of (1.2)–(1.3) defined by (3.8) is unique
on the interval n ≤ t < n + 1, n = 0, 1, 2, . . . . Hence the initial value problem
(1.2)–(1.3) has a unique solution defined on {−1}∪ [0,∞) provided that a ̸= 0.
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Now, consider the case a = 0. In this case Equation (1.2) reduces to

Dα
0 x(t) = a0x([t]) + a1x([t− 1]), t ≥ 0. (3.13)

Applying the above procedure, we can easily see that Equation (3.13) with the
initial conditions (1.3) has only one solution as

x(t) = xn(t) =
(
1 + a0

(t− n)α

α

)
cn + a1

(t− n)α

α
cn−1, t ∈ [n, n+ 1),

n = 0, 1, 2, ..., (3.14)

where cn is the unique solution to the difference equation

cn+2 −
(
1 +

a0
α

)
cn+1 −

a1
α
cn = 0, n = −1, 0, 1, 2, ..., (3.15)

with the initial conditions c−1 = x(−1) and c0 = x(0). Hence the proof is
completed. ⊓⊔

Remark 1. It is noted that the solution (3.8) can be expressed for t ∈ {−1} ∪
[0,∞) as

x(t) =
(
− a0

a
+
a0
a
ea

(t−[t])
α

α

+ea
(t−[t])

α

α)
c[t]+

(
− a1

a
+
a1
a
ea

(t−[t])
α

α)
c[t−1], (3.16)

where c[t] is the unique solution of the initial value problem

c[t+2] + pc[t+1] + qc[t] = 0, c−1 = x(−1), c0 = x(0), (3.17)

where p and q are shown in (3.12). Similarly, the solution (3.14) can be ex-
pressed for t ∈ {−1} ∪ [0,∞) as

x(t) =
(
1 + a0

(t− [t])α

α

)
c[t] + a1

(t− [t])α

α
c[t−1], (3.18)

where c[t] is the unique solution of

c[t+2] −
(
1 +

a0
α

)
c[t+1] −

a1
α
c[t] = 0, c−1 = x(−1), c0 = x(0). (3.19)

Remark 2. Since the conformable derivative of a constant function is zero, the
equilibrium equation of (1.2) is

(a+ a0 + a1)xe = 0.

If a+ a0 + a1 ̸= 0, then xe = 0 is the unique equilibrium point of (1.2) and so
x(t) = 0 is the only constant solution of (1.2)–(1.3) with c0 = c−1 = 0. On the
other hand, if a+a0+a1 = 0, then every real number, namely xe = c ∈ R, is an
equilibrium point of (1.2) and so x(t) = c is a constant solution of (1.2)–(1.3)
with c0 = c−1 = c.

Due to this remark, henceforth we will assume that a+ a0 + a1 ̸= 0, that is
the only constant solution of (1.2) is x(t) = 0.

Math. Model. Anal., 30(3):461–479, 2025.
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Remark 3. If α = 1, then the conformable derivative becomes classical deriva-
tive. Hence, taking α = 1 in the solution (3.16) of (1.2)–(1.3) gives the solution
of Equation (1.1) in [8] with the initial conditions x(−1) = c−1, x(0) = c0.

Theorem 5. Assume that a ̸= 0 and a1 ̸= 0. If one of the following conditions
is true, then every solution of (1.2) oscillates:

(i1) a > 0, a0 < ae
a
α

1−e
a
α

and a1 = a

4(1−e
a
α )

(
a0

a − a0

a e
a
α − e

a
α

)2

;

(i2) a > 0, a0 < ae
a
α

1−e
a
α

and 0 > a1 > a

4(1−e
a
α )

(
a0

a − a0

a e
a
α − e

a
α

)2

;

(i3) a < 0 and a1 < a

4(1−e
a
α )

(
a0

a − a0

a e
a
α − e

a
α

)2

.

Proof. For a ̸= 0, a solution x(t) of (1.2) is given by (3.16). It is trivial that
the characteristic equation of the difference equation (3.10) is equal to (2.2)
with the coefficients p and q are defined by (3.12). So, by Theorem 1-(A),
Equation (3.10) is oscillatory if and only if the characteristic equation (2.2) has
no positive real roots. Obviously, assumption (i1) fulfill the condition (i) of
Theorem 2 (Indeed, if a > 0, then 1− ea/α < 0 and therefore by the conditions
in (i1), it follows that p > 0 and q = 1

4p
2). So, due to assumption (i1), every

solution cn of Equation (3.10) is oscillatory. Since x(n) = cn, every solution x(t)
of Equation (1.2) is oscillatory when (i1) is satisfied. Similarly, assumptions (i2)
and (i3), respectively, verify the conditions (ii) and (iii) of Theorem 2. Indeed,
according to the first condition in (i2), it is again 1− ea/α < 0. Therefore, by
(i2), it can be seen that p > 0 and 0 < q < 1

4p
2. Moreover, if a < 0, then

1 − ea/α > 0 and hence by the conditions in (i3), it takes out q > 1
4p

2). So,
each of these two assumptions also provides every solution of difference equation
(3.10) and as well as that every solution of Equation (1.2) is oscillatory. Hence,
the proof is completed. ⊓⊔

Corollary 1. Assume that a = 0 and a1 ̸= 0. If one of the following conditions
is true, then every solution of (3.13) oscillates:

(i1) a0 + α < 0 and 4αa1 + (α+ a0)
2 = 0;

(i2) a0 + α < 0, a1 < 0 and 4αa1 + (α+ a0)
2 > 0;

(i3) 4αa1 + (α+ a0)
2 < 0.

Proof. Equation (1.2) with a = 0 points out Equation (3.13). A solution x(t)
of (3.13) is shown by (3.18). The rest of the proof can be easily performed by
applying the process in the proof of Theorem 5 and so it is omitted. ⊓⊔

Theorem 6. Let us assume that a ̸= 0 and a1 ̸= 0. The solution x(t) of
(1.2)–(1.3) goes to zero as t → +∞ if and only if

|a0 − (a0 + a)ea/α| < |a| − a1|1− ea/α| < 2|a| (3.20)

is satisfied.
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Proof. Since a ̸= 0, the solution x(t) of (1.2)–(1.3) is given by (3.16). It is
clear that the two brackets in (3.16) are bounded because t − [t] ∈ [0, 1) for
all t ∈ {−1} ∪ [0,∞). Now, if x(t) → 0 as t → +∞, then also x([t]) → 0 as
[t] → ∞, that is x([t]) = x(n) = cn → 0 as n → ∞, where cn is given by (3.10)–
(3.11). This means that the zero solution of the difference equation (3.10) is
asymptotically stable. This requires that the condition (2.3) must be satisfied
for the coefficients of (3.10) p and q that are determined by (3.12). Indeed, if
we put these p and q into (2.3), then the condition (3.20) immediately emerges.
So, this completes the proof of necessity.

For the sufficiency, let the condition (3.20) be verified. Clearly, this condi-
tion implies the condition (2.3). Therefore, Theorem 3 can be applied to the
difference equation (3.10) and so it is seen that x(n) = cn → 0 as n → ∞.
Hence, from (3.16), x(t) → 0 as t → +∞. ⊓⊔

Corollary 2. Assume that a = 0 and a1 ̸= 0. Then the solution of (3.13), (1.3)
goes to zero as t → +∞ if and only if

|a0 + α| < α− a1 < 2α. (3.21)

Proof. Since a = 0, Equation (1.2) is reduced to Equation (3.13) and the
solution of this equation with the initial conditions (1.3) is denoted by (3.18)–
(3.19). The proof is completed by following the same procedure in the proof of
Theorem 6 and so it is omitted. ⊓⊔

Theorem 7. Let a1 ̸= 0. The nontrivial solution x(t) of (1.2)–(1.3) is periodic
of period k if and only if x(k) = x(0) and x(k−1) = x(−1), where k is a positive
integer.

Proof. For a ̸= 0, the solution x(t) of (1.2) is given by (3.8). Let x(k) = x(0)
and x(k − 1) = x(−1) be true, that is ck = c0 and ck−1 = c−1. Then, we need
to show that

xn(t− k) = xn+k(t), t ∈ [n+ k, n+ k + 1), n = 0, 1, 2, . . . . (3.22)

Clearly, Equation (3.22) implies that the solution x(t) of (1.2) is periodic with
period k, that is x(t+ k) = x(t) for t ∈ {−1} ∪ [0,∞).

From (3.8), for n = 0 and n = k, we get, respectively,

x0(t) =
(a0c0 + a1c−1

a

)(
− 1 + ea

tα

α

)
+ c0e

a tα

α , 0 ≤ t < 1,

xk(t) =
(a0ck + a1ck−1

a

)(
− 1 + ea

(t−k)α

α

)
+ cke

a
(t−k)α

α , k ≤ t < k + 1.

Since ck = c0 and ck−1 = c−1, we get

x0(t− k) = xk(t), k ≤ t < k + 1. (3.23)

Considering Equation (3.23) and the continuity of the solution x(t) along the
interval [0,∞), it is emerged the equality c1 = c1+k. Subsequently, from (3.8),
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for n = 1 and n = 1 + k, we obtain, respectively,

x1(t) =
(a0c1 + a1c0

a

)(
− 1 + ea

(t−1)α

α

)
+ c1e

a
(t−1)α

α , 1 ≤ t < 2,

x1+k(t)=
(a0c1+k+a1ck

a

)(
−1+ea

(t−1−k)α

α

)
+c1+ke

a
(t−1−k)α

α , 1+k≤t < 2+k.

It is clear that x1(t − k) = x1+k(t) for t ∈ [1 + k, 2 + k). In this way, we can
show that xn(t− k) = xn+k(t) for t ∈ [n+ k, n+ k + 1), n = 0, 1, 2, . . . .
Now, if x(t + k) = x(t), that is the solution x(t) is periodic of period k, then
we openly have ck = c0 and ck−1 = c−1.
Finally, for the case a = 0, the solution x(t) of (3.13) with the initial conditions
(1.3) is given by (3.14) where cn is the unique solution of (3.15). Following the
above method, we arrive the same result if and only if ck = c0 and ck−1 = c−1.
So, the proof is completed. ⊓⊔

Remark 4. If α = 1, a0 = 0, a1 = −b and a replaced by −a, then Equation (1.2)
reduces to Equation (14) in [2]. In this case, our result Theorem 7 and Lemma 2
in [2] coincide with one another.

Corollary 3. Assume that a ̸= 0 and a1 ̸= 0.

(1) If

a0 = a1 + a
(
(1 + ea/α)/(1− ea/α)

)
, (3.24)

then the solution x(t) of (1.2)–(1.3) is periodic of period 2;

(2) If [
a0 − a1 − (a0 − a1 + a) ea/α

]2
+

[
a− a0 + (a+ a0) e

a/α
]

×
[
a− a1 + a1e

a/α
]
= 0,

then the solution x(t) of (1.2)–(1.3) is periodic of period 3.

Proof. Here, we only give the proof of (1) because the proof of (2) can be
done, similarly. Theorem 7 implies that the solution x(t) of (1.2)–(1.3) given
by (3.16)–(3.17) is periodic of period 2 whenever

c2 = c0, c1 = c−1. (3.25)

From (3.17), for t = −1 and t = 0 ( or equivalently from (3.10), for n = −1
and n = 0) we get, respectively,

c1 = −pc0 − qc−1, c2 = (p2 − q)c0 + pqc−1, (3.26)

where p and q are denoted by (3.12). Substituting (3.26) in (3.25), we have the
system {(

p2 − q − 1
)
c0 + pqc−1 = 0,

(−p)c0 − (q + 1) c−1 = 0.
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Since we are interested in nontrivial solutions, we have

∆ =

∣∣∣∣∣
(
p2 − q − 1

)
pq,

−p − (q + 1)

∣∣∣∣∣ = 0,

which yields (3.24) and hence the proof of (1) is completed. ⊓⊔

Corollary 4. Assume that a = 0 and a1 ̸= 0.

(1) If

a0 − a1 + 2α = 0,

then the solution x(t) of (3.13), (1.3) is periodic of period 2;

(2) If

(a0 − a1 + α)
2
+ (a0 + 2α) (a1 − α) = 0,

then the solution x(t) of (3.13), (1.3) is periodic of period 3.

Proof. The proof is similar to the proof of Corollary 3. ⊓⊔

4 Examples

This section provides several examples to verify our main results.

Example 1. Let us consider Equation (1.2) with α = 0.5, a = 0.5, a0 = −1 and
a1 = −0.02. In this case, all conditions in hypothesis (i2) of Theorem 5 are
satisfied. So, every solution of

D0.5
0 x(t) = 0.5x(t)− x([t])− 0.02x([t− 1]) (4.1)

is oscillatory. In addition to this property, also every solution of (4.1) goes to
zero as t → +∞ because all conditions in Theorem 6 are satisfied for (4.1).
Indeed, these two properties can be seen by obtaining the solution x(t) of (4.1)
with the initial conditions x(−1) = 0 and x(0) = 1 from (3.16)–(3.17) (see
Figure 1).

Figure 1. Graph of the solution of (4.1) with x(−1) = 0 and x(0) = 1.
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Example 2. Let us consider the initial value problem{
D0.25

0 x(t) = x(t) + e4

1−e4x([t])−
1

1−e4x([t− 1]),

x(−1) = 1, x(0) = 2,
(4.2)

for t ≥ 0. Here, α = 0.25, a = 1, a0 = e4

1−e4 , a1 = − 1
1−e4 . Clearly, the case (1)

of Corollary 3 is verified and so the solution x (t) of (4.2) is periodic of period
2. Indeed, from (3.16), the solution x(t) of (4.2) is obtained as

x(t) =
1

1− e4

[(
−e4 + e4(t−[t])

0.25
)
c[t] +

(
1− e4(t−[t])0.25

)
c[t−1]

]
, (4.3)

where c[t] is calculated by (3.17) as

c[t+2] = c[t]. (4.4)

From (4.3), it follows

x(t+ 2) =
1

1−e4

[(
−e4+e4(t−[t])

0.25
)
c[t+2] +

(
1− e4(t−[t])0.25

)
c[t+1]

]
. (4.5)

By (4.4), c[t+1] = c[t−1] and so (4.5) is equal to (4.3), that is x(t + 2) = x(t).
This means that the solution x(t) is periodic with period 2 (see Figure 2).

Figure 2. 2- periodic solution x(t) of (4.2).

Example 3. Consider the conformable differential equation

D0.25
0 x(t) = x(t) +

1 + e4

1− e4
x([t]) +

1

1− e4
x([t− 1]) (4.6)

and the initial conditions

x(−1) = −1, x(0) = 1. (4.7)

The solution x(t) of (4.6)–(4.7) is periodic with period 3 because this time the

case (2) of Corollary 3 is satisfied for the values α = 0.25, a = 1, a0 = 1+e4

1−e4

and a1 = 1
1−e4 (see Figure 3).
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Figure 3. 3 periodic solution of (4.6)–(4.7).

The following examples are considered for the case a = 0. Especially, it
is noted that parameter α in Equation (4.9) can be regarded as a bifurcation
parameter because the stability type changes at a point of α.

Example 4. For the parameters a0 = − 1
4 , a1 = − 1

36 and α ∈ (0, 1], the asymp-
totic stability condition given by (3.21) reduces to∣∣−1/4 + α

∣∣ < α+ 1/36 < 2α. (4.8)

We emphasize that (4.8) is not satisfied for α ∈ (0, 1
9 ] and so the zero solution

of

Dα
0 x(t) = −1

4
x([t])− 1

36
x([t− 1]) (4.9)

is not asymptotically stable when α ∈ (0, 1
9 ]. However, (4.8) holds for α ∈ ( 19 , 1]

and so the zero solution of (4.9) is asymptotically stable when α ∈ ( 19 , 1].
According to these facts, there is a bifurcation at α = 1

9 . So, the value α = 1
9

is a bifurcation point of Equation (4.9).
Specifically, for α = 0.1 ∈ (0, 1

9 ] the zero solution of (4.9) is not asymptoti-
cally stable (see Figure 4) but for α = 0.5 ∈ ( 19 , 1] the zero solution asymptot-
ically stable (see Figure 5).

Figure 4. The solution x(t) of (4.9) with x(−1) = 1 and x(0) = 2.

Example 5. The condition in (2) of Corollary 4 is verified for the following
equation:

D0.8
0 x(t) = −1.6x([t])− 0.8x([t− 1]). (4.10)

So, the solution of Equation (4.10) with the initial conditions x(−1) = 0 and
x(0) = 1 is periodic of period 3 (see Figure 6).
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Figure 5. The solution x(t) of (4.9) with x(−1) = 0 and x(0) = 2.

Figure 6. 3 periodic solution of (4.10).

5 Conclusions

In this paper, we have studied conformable differential equations with piecewise
constant arguments, establishing existence and uniqueness results, as well as
conditions for oscillatory behavior, convergence, and periodicity. Numerical
examples validated the theoretical findings, highlighting their applicability in
modeling systems with discontinuous dynamics. Future research could explore
stability and bifurcation in more complex conformable systems with piecewise
constant arguments. Additionally, extending the analysis to multi-dimensional
systems may provide deeper insights into real-world applications.
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