Enhancing blood glucose control through the fixed point theorem

    Ayoub Sakkoum Info
    Hamza Toufga Info
    Lahbib Benahmadi Info
    Wafae Chahid Info
    Mustapha Lhous Info
DOI: https://doi.org/10.3846/mma.2025.22147

Abstract

Diabetes is a chronic condition that poses significant health risks globally, arising from the body’s inability to effectively utilize insulin produced by the pancreas or insufficient insulin production. This paper proposes a novel approach to diabetes management by focusing on optimal control strategies aimed at regulating blood glucose levels to achieve desired targets. We integrate concepts of output controllability into a discrete-time model that captures the dynamics of glucose and insulin interactions. Applying fixed-point theorems, we define permissible control mechanisms for dealing with the challenge of keeping glucose concentrations within optimal ranges. The theoretical framework is supported by numerical simulations that demonstrate the efficacy of the suggested optimal control method in minimizing blood glucose fluctuations. Our findings shed light on the development of advanced blood glucose control systems, eventually leading to enhanced diabetes management and improved quality of life for individuals impacted by the disease.

Keywords:

diabetes, glucose regulation, insulin, fixed-point theorems, optimal control strategies

How to Cite

Sakkoum, A., Toufga, H., Benahmadi, L., Chahid, W., & Lhous, M. (2025). Enhancing blood glucose control through the fixed point theorem. Mathematical Modelling and Analysis, 30(3), 514–534. https://doi.org/10.3846/mma.2025.22147

Share

Published in Issue
September 11, 2025
Abstract Views
0

References

A.H. Adoum, M.S.D. Haggar, T. Djaokamla and J.M. Ntaganda. A mathematical model of glucose homeostasis in Chad context. Journal of Ramanujan Society of Mathematics & Mathematical Sciences, 10(1), 2022. https://doi.org/10.56827/JRSMMS.2022.1001.13

A.H. Adoum, M.S.D. Haggar and J.M. Ntaganda. Mathematical modelling of a glucose-insulin system for type 2 diabetic patients in Chad. Mathematical Modelling and Numerical Simulation with Applications, 2(4):244–251, 2022.

K.I.A. Ahmed, H.D.S. Adam, M.Y. Youssif and S. Saber. Different strategies for diabetes by mathematical modeling: Applications of fractal–fractional derivatives in the sense of Atangana–Baleanu. Results in Physics, 52:106892, 2023. https://doi.org/10.1016/j.rinp.2023.106892

K.I.A. Ahmed, H.D.S. Adam, M.Y. Youssif and S. Saber. Different strategies for diabetes by mathematical modeling: modified minimal model. Alexandria Engineering Journal, 80:74–87, 2023. https://doi.org/10.1016/j.aej.2023.07.050

M.H. Alshehri, S. Saber and F.Z. Duraihem. Dynamical analysis of fractional-order of IVGTT glucose–insulin interaction. International Journal of Nonlinear Sciences and Numerical Simulation, 24(3):1123–1140, 2023. https://doi.org/10.1515/ijnsns-2020-0201

R. Bakke. Mathematical modeling of diabetic patient model using intelligent control techniques. Lecture notes on data engineering and communications technologies, pp. 17–35, 2023. https://doi.org/10.1007/978-981-99-0609-3_2

B. Basturk, Z.K. Ozerson and A. Yuksel. Evaluation of the effect of macronutrients combination on blood sugar levels in healthy individuals. Iranian journal of public health, 50(2):280, 2021. https://doi.org/10.18502/ijph.v50i2.5340

L. Benahmadi, M. Lhous and A. Tridane. Mathematical modeling of COVID-19 in Morocco and the impact of controlling measures. Commun. Math. Biol. Neurosci., 2021:Article–ID 53, 2021.

L. Benahmadi, M. Lhous, A. Tridane and M. Rachik. Output trajectory controllability of a discrete-time sir epidemic model. Mathematical Modelling of Natural Phenomena, 18:16, 2023. https://doi.org/10.1051/mmnp/2023015

R.N. Bergman, Y.Z. Ider, C.R. Bowden and C. Cobelli. Quantitative estimation of insulin sensitivity. American Journal of Physiology-Endocrinology And Metabolism, 236(6):E667, 1979. https://doi.org/10.1152/ajpendo.1979.236.6.E667

R.N. Bergman, L.S. Phillips and C. Cobelli. Measurement of insulin sensitivity and β-cell glucose sensitivity from the response to intraveous glucose. J. Clin. Invest, 68:1456–1467, 1981. https://doi.org/10.1172/JCI110398

R.N. Bergman, L.S. Phillips and C. Cobelli. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. The Journal of clinical investigation, 68(6):1456–1467, 1981. https://doi.org/10.1172/JCI110398

D.N. Chalishajar, R.K. George, A.K. Nandakumaran and F.S. Acharya. Trajectory controllability of nonlinear integro-differential system. Journal of the Franklin Institute, 347(7):1065–1075, 2010. https://doi.org/10.1016/j.jfranklin.2010.03.014

J.J. Chamberlain, A.S. Rhinehart, C.F. Shaefer and A. Neuman. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association standards of medical care in diabetes. Annals of internal medicine, 164(8):542– 552, 2016. https://doi.org/10.7326/M15-3016

M. Chan. WHO global report on diabetes. World Health Organization, 2016.

N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge and B. Malanda. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138:271–281, 2018. https://doi.org/10.1016/j.diabres.2018.02.023

A. Cinar and K. Turksoy. Modeling glucose and insulin concentration dynamics. Advances in Artificial Pancreas Systems: Adaptive and Multivariable Predictive Control, pp. 33–50, 2018. https://doi.org/10.1007/978-3-319-72245-0_4

B. Farahmand, M. Dehghani, N. Vafamand, A. Mirzaee, R. Boostani and J.K. Pieper. Robust nonlinear control of blood glucose in diabetic patients subject to model uncertainties. ISA transactions, 133:353–368, 2023. https://doi.org/10.1016/j.isatra.2022.07.009

M. Farman, A. Ahmad, A. Zehra, K.S. Nisar, E. Hincal and A. Akgul. Analysis and controllability of diabetes model for experimental data by using fractional operator. Mathematics and Computers in Simulation, 218:133–148, 2024. https://doi.org/10.1016/j.matcom.2023.11.017

M. Farman, A. Hasan, C. Xu, K.S. Nisar and E. Hincal. Computational techniques to monitoring fractional order type-1 diabetes mellitus model for feedback design of artificial pancreas. Computer Methods and Programs in Biomedicine, 257:108420, 2024. https://doi.org/10.1016/j.cmpb.2024.108420

M. Farman, M.U. Saleem, M.O. Ahmed and A. Ahmad. Stability analysis and control of the glucose insulin glucagon system in humans. Chinese Journal of Physics, 56(4):1362–1369, 2018. https://doi.org/10.1016/j.cjph.2018.03.037

M. Gallenberger, W. Castell, B.A. Hense and C. Kuttler. Dynamics of glucose and insulin concentration connected to the b-cell cycle: model development and analysis. Theoretical Biology and Medical Modelling, 9:1–22, 2012. https://doi.org/10.1186/1742-4682-9-46

R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M.O. Federici, T.R. Pieber, H.C. Schaller, L. Schaupp and T. Vering. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological measurement, 25(4):905, 2004. https://doi.org/10.1088/0967-3334/25/4/010

D. Infante. Trailblazing discoveries: The top 5 diabetes research breakthroughs of 2023. News-Medical Life science, 2023.

M. Lhous, M. Rachik, J. Bouyaghroumni and A. Tridane. On the output controllability of a class of discrete nonlinear distributed systems: a fixed point theorem approach. International Journal of Dynamics and Control, 6:768–777, 2018. https://doi.org/10.1007/s40435-017-0315-9

W. Liu. A mathematical model for the robust blood glucose tracking. Mathematical Biosciences and Engineering, 16(2):759–781, 2019. https://doi.org/10.3934/mbe.2019036

R. Luft. Oskar Minkowski: discovery of the pancreatic origin of diabetes, 1889. Diabetologia, 32(7):399–401, 1989. https://doi.org/10.1007/BF00271257

K. Lunze, T. Singh, M. Walter, M.D. Brendel and S. Leonhardt. Blood glucose control algorithms for type 1 diabetic patients: A methodological review. Biomedical signal processing and control, 8(2):107–119, 2013. https://doi.org/10.1016/j.bspc.2012.09.003

D.J. Magliano and E.J. Boyko. Diabetes around the world in 2021. International Diabetes Federation, 2021.

C.D. Man, R.A. Rizza and C. Cobelli. Meal simulation model of the glucose-insulin system. IEEE Transactions on biomedical engineering, 54(10):1740–1749, 2007. https://doi.org/10.1109/TBME.2007.893506

S.M. Pappada, B.D. Cameron and P.M. Rosman. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. Journal of diabetes science and technology, 2(5):792–801, 2008. https://doi.org/10.1177/193229680800200507

S. Saber and A. Alalyani. Stability analysis and numerical simulations of IVGTT glucose-insulin interaction models with two time delays. Mathematical Modelling and Analysis, 27(3):383–407, 2022. https://doi.org/10.3846/mma.2022.14007

A. Sharma, H. Singh and R. Nilam. A methodical survey of mathematical modelbased control techniques based on open and closed loop control approach for diabetes management. International Journal of Biomathematics, 15(07), 2022. https://doi.org/10.1142/s1793524522500516

H. Shi, Y. Ge, H. Wang, Y. Zhang, W. Teng and L. Tian. Fasting blood glucose and risk of stroke: A dose–response meta-analysis. Clinical nutrition, 40(5):3296–3304, 2021. https://doi.org/10.1016/j.clnu.2020.10.054

J. Sturis, K.S. Polonsky, E. Mosekilde and E. Van Cauter. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. American Journal of Physiology-Endocrinology And Metabolism, 260(5):E801–E809, 1991. https://doi.org/10.1152/ajpendo.1991.260.5.E801

J. Sturis, E. Van Cauter, J.D. Blackman and K.S. Polonsky. Entrainment of pulsatile insulin secretion by oscillatory glucose infusion. The Journal of Clinical Investigation, 87(2):439–445, 1991. https://doi.org/10.1172/JCI115015

L. Tie and K.-Y. Cai. On near-controllability of nonlinear control systems. In Proceedings of the 30th Chinese Control Conference, pp. 131–136. IEEE, 2011.

View article in other formats

CrossMark check

CrossMark logo

Published

2025-09-11

Issue

Section

Articles

How to Cite

Sakkoum, A., Toufga, H., Benahmadi, L., Chahid, W., & Lhous, M. (2025). Enhancing blood glucose control through the fixed point theorem. Mathematical Modelling and Analysis, 30(3), 514–534. https://doi.org/10.3846/mma.2025.22147

Share