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1 Introduction

Worldwide, 451 million people were affected by diabetes in 2017, and sci-
entists project that the number of individuals with the disease will increase
significantly, reaching 643 million by 2030 and 783 million by 2045 [29]. In
adults, diabetes and impaired glucose tolerance have been on the rise globally
over the last several decades, according to [16]. Type 1, type 2, and gestational
diabetes are the three main types of this disease. Type 1 diabetes occurs when
the pancreatic insulin-producing cells are destroyed by the immune system.
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However, insulin resistance and inactivity are major risk factors for type 2 dia-
betes. A higher risk of developing type 2 diabetes is associated with gestational
diabetes, which arises during pregnancy. Early diagnosis and proper treatment
for all types of diabetes, as well as prevention measures for type 2 diabetes, are
all helping reduce the diabetes epidemic. To prevent complications like heart
disease, kidney issues, renal problems, and nerve damage, diabetes manage-
ment involves medication, lifestyle modifications, and routine monitoring [17].
When the g cells of the Langerhans islets do not work properly, it prevents the
body from producing enough insulin, leading to type 1 diabetes. If insulin is
not able to reach the cells of the body, type 2 diabetes will develop. according
to [18].

The measurements of blood glucose are indicated in millimoles per liter
(mmol/L) or milligrams per deciliter (mg/dL). The pancreas regulates blood
glucose levels in the human body by producing and releasing the hormones in-
sulin and glucagon, thereby adjusting the physiological range of 70-120 mg/dl.
The normal blood glucose levels in humans are determined by the amount of
glucose in the blood. Individuals without diabetes typically have fasting blood
glucose levels ranging from 3.9 to 5.5 mmol/L (70-100 mg/dL) and less than
7.8 mmol/L (140 mg/dL) two hours after a meal. The typical range for kids
and young adults is 3.3 to 5.5 mmol/L (60 to 100 mg/dL) for those under 12
years of age and 3.9 to 5.5 mmol/L (70 to 100 mg/dL) for those older than 12.
For infants, the levels range from 2.2 to 5.5 mmol/L for those under 24 hours
and 2.8 to 5.5 mmol/L for those over 24 hours old [8,9,14,15,28,34]. According
to the American Diabetes Association (ADA), fasting blood glucose levels less
than 100 mg/dl indicate poor glucose tolerance, while readings greater than
126 mg/dl may indicate diabetes. Individual variations in normal blood glu-
cose levels should be considered for tailored advice [7]. The discovery of insulin
and its importance in diabetes was such a significant medical achievement that
a number of scientists, such as Oskar Minkowski and Joseph von Mering, were
awarded the Nobel Prize [27]. Diabetes research seeks to advance diagnosis,
therapy, and possibly even a cure.The discovery of insulin in the 1920s com-
pletely changed the treatment of diabetes. Recent studies have found genetic
variations linked to the development of diabetes. Current treatments use in-
sulin therapy and other alternatives to manage blood glucose levels and prevent
challenges [24].

For diabetic patients, mathematical modeling is essential for controlling
blood glucose levels. This modeling can take many forms, from simple lin-
earization techniques to complex physiological-based models that consider in-
sulin production, action, and glucose dynamics. In recent years, there has been
an increase in the number of individuals with type 2 diabetes. Over the past 50
years, compartmental models have been used to characterize the glucose-insulin
system, ranging from simple models like Bergman’s [12] to more complex ones
like Hovorka [23], UVa-Padova [30] and Sorensen’s [18]. Several researchers
have developed a mathematical model of the human glucose-insulin system in
order to effectively manage blood glucose levels. Mathematical modeling seeks
to forecast changes in blood glucose levels as a result of several factors outside
the body. Bergman et al. [11,12] came up with a simple compartmental model
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of nonlinear ordinary differential equations that shows how different types of
blood glucose are connected to the hormone insulin. Blood glucose, insulin, and
a hormone were considered to be in two different compartments and to interact
with each other. Subashri et al. [6] applied state-space analysis and machine
learning approaches on dynamic simulations of glucose-insulin interaction to
manage blood glucose levels in diabetic individuals. Ankit Sharma et al. [33]
analyze several mathematical models and control methods for diabetes manage-
ment, including genetic algorithms, neural networks, sliding mode controllers,
and modeling predictive controllers. Ali Cinar et al. [17] look at a number of
modeling approaches for studying how glucose and insulin levels change in the
body, showing how important compartmental models are. Pappada et al. [31]
developed a neural network model to predict blood glucose levels. Bergman
and colleagues [10,12] used nonlinear ordinary differential equations to examine
the relationship between different types of blood glucose and insulin hormones.
Storis and colleagues [35] suggested a discretized model for glucose breakdown
and reactions with six states. Adoum et al. [1,2] investigated mathematical
models of insulin and glucose systems in Chadians with type 2 diabetes.

In recent years, a number of studies have been conducted on controllability
in linear and non-linear dynamical systems, including complete, small, local,
regional, near, null, and output controllability. In the first paper by Dimpleku-
mar N. Chalishajar et al. [13], they look at how to control the trajectory of
an abstract nonlinear integro-differential system in both finite and infinite di-
mensional space. In the second paper by Lin Tie and Kai-Yuan Cai [37], they
look at how to almost control upper-triangular bilinear systems that are not
controllable. Lhous et al. [25] described a way to check if the output of nonlin-
ear, infinite-dimensional discrete systems can be controlled. A mathematical
model with optimal control was analyzed in [9] to study the epidemic’s output
toward a desirable disease output. For people with type 1 diabetes, Saleem
et al. [21] suggested using linear control for a glucose-insulin-glucagon pump
that is made up of several parts. In order to determine whether glucose drives
pulsatile insulin secretion or if an intrapancreatic pacemaker passively entrains
glucose, Jeppe Sturi et al. [36] investigated whether oscillatory glucose infusion
might change the insulin secretion pulse frequency in normal males. Sturis
et al. [26] published research that contributed to the discussion and efforts to
manage diabetes. Muhammad Farman et al. [19] present a mathematical model
of cells, insulin, glucose, and growth hormone that includes the fractional op-
erator. In [20], Muhammad Farman and colleagues discovered a major class
of control issues regulated by nonlinear fractal order systems with input and
output signals. The aim of the study was to develop a direct transcription
method that incorporates impulsive immediate orders. Khalid I.A. Ahmed et
al. produced two major papers in [4] and [3] by providing new strategies for
diabetes through mathematical modeling, focused on modified minimal models.
Another diabetic treatment technique is to use fractal-fractional derivatives in
the Atangana-Baleanu model. Mansoor H. Alshehri et al. [5] offered a dynami-
cal analysis of fractional-order IVGTT glucose-insulin interaction, while Sayed
Saber [32] also contributed. Please send us the stability analysis and numerical
simulations of IVGTT glucose-insulin interaction models with two time delays.
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The following is the structure of the remaining sections of this study: Sec-
tion 2 describes the structure of a discrete-time model with three basic com-
partments to illustrate the dynamics of glucose and insulin levels over time. We
also propose an optimal control problem. In Section 3, we introduce the fixed
point method to characterize all admissible controls and select the one with
the minimum norm. Section 4 discusses numerical simulations and compar-
isons of our work with others to demonstrate the model’s operation. Section 5
concludes and summarizes the important results of this investigation.

2 The mathematical model

2.1 The structure of the main model

The glucose-insulin regulation system consists of three basic components:
cell membrane permeability to glucose molecules is increased by insulin, the
primary regulator of glucose uptake in target cells, 8-cells store and generate
insulin in the pancreas and glucose, which is detected by [-cells as an energy
source, releases stored insulin molecules and produces new insulin when blood
glucose concentration increases. The abdominal organ, known as the pancreas,
is responsible for producing insulin [22]. Insulin plays an important function in
ensuring that glucose derived from nutrients in food is properly used or kept in
the body. Glucose levels continue to rise after eating because there is insufficient
insulin to transfer glucose into cells in the human body. The pancreas stops
producing insulin, which leads to type 1 diabetes. Type 2 diabetes develops
when the pancreas fails to produce enough insulin. We are specifically focusing
on type 1 diabetes. The intestine produces blood glucose from food. Two dif-
ferent compartments contain the blood glucose and the hormone insulin, which
interact with each other. The liver can convert blood glucose into glycogen,
which tissue metabolism can use with or without insulin’s assistance. Under
the stimulation of blood glucose, the endocrine system secretes plasma insulin,
which then enters a "remote compartment” to accelerate glucose utilization.
Insulin metabolism consumes it. Under this assumption. In considering these
assumptions and ideas, we present a discrete-time model that represents the
dynamics of blood glucose levels and their connection to insulin. The model
equations for glucose dynamics are presented below:

giv1 =(1 —a)gi — higi + fi,
hiy1 =(1 =b)h; +cki,  kiy1 = (1 — d)k; 4 uy,

where gg > 0, hg > 0, and kg > 0 are the initial states. The total population
is N; = g; + h; + k.

The blood glucose concentration g;, plasma insulin concentration h;, and in-
sulin’s indirect effect on glucose k; are the variables represented in the equations
provided above.The rate constants used in the model are defined according to
their biological meaning in Table 1. The stage f; marks the entry of glucose
into the bloodstream, where it splits into two categories: basic external glucose
and glucose disorder. The objective is to keep the blood sugar level normal.
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Table 1. Descriptions of parameters.

Parameter Description

fi The entry rates of exogenous glucose.

U; The entry rates of insulin released by the endocrine.
a Glucose utilization rate constant(/min).

b Insulin effect rate constant(/min).

c Insulin effect rate constant(/(pmol/l)/min?).

d Insulin metabolism constant(/min).

u; € [0,1] is the control variable, which is the quantity of insulin produced by
the endocrine system or injected indirectly. We generate an output equation
to monitor and regulate the glucose levels y; = ¢;, 7 € {0,...,N}.

2.2 The structure of the new model

We adapt our system to a new one, investigate its output controllability, and
study optimal control to understand how to apply the fixed point concept. Let
us consider the state ¢; = (g;, hi, ki), assuming the next system

Giyr = A1+ Az, + Azuy,
(E){ gO c RB,

with the corresponding output y; = A4(;, @ € {0,..., N}, where Ay, Ay and
A, are matrices defined by

l1—-a 0 0 0
A1: 0 1-b c , A3: 0 ,A4:[1,0,0].
0 0 1-d 1

The variance and nonlinear operator is As ;

AQi : RS — Rg,

)

T —yz + fi
y — 0
z 0

A desired output y¢ = (y{,...,y%) is proposed, the following path in an at-
tempt to make the blood glucose correspond to the previously imposed output
control, which is determined in the natural state at 6 mmol/l. The goal is to
find the optimal control u = (ug,u1,...,unx—1) that aligns with the control
while minimizing functional cost

J(u) = [ul®, Vie{l,...,N},

u; satisfies y; = yf, . We use the state space modeling technique to show how
we can represent the input retrieval problem as an optimal control problem with
constraints on the final state. For a finite subset w? = {e,e +1,...,n} of Z,
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with n > ¢, let 12(w?,R?) be the space in all processes (ti)icewr , ti € R3. Let
Ty and T, be the operators given by

T : l2(w:]1\,;R3) — lz(w:]l\,;RS),
(t-n,.onto1) — (t-Nt15---,t21,0),
T : R3 — ZQ(WZ}V;H@),
p H (07"'707p)
and t' € I?(w” 5;R?) by
tto= (N, thy),
) { Xit+i > 1fZ+]203
t, =
X0 , else.

The state of (x;); is a solution of the model (E). The order of (#!); is a unique
answer to the following equation:

ti+1 = Tlti + T2Xz , 1€ Wév_l,
to (XO)XO)"'?XO)‘
Let i € R® x [2(w”3;R?) be the signals that are described by o; = ( ;Z ).
The following conclusion follows obviously: [25].

Proposition 1. (¢0;);cxv is the only solution to the difference equation stated
by

0it1 = @oi+vioi +0Ou;, icw)
S S
(X07"'aXO) ’

wherego:(;lﬂl 19),%:(A(§’i 8) and@:<%3 >
> T

Remark 1. The equality

oN = ( i(J\JrV ) = ( EC)?([),...,XN—I) )

enables us to integrate the system (E) trajectory (xo,X1,--.,Xn) to the final
state gy of our system (F7). This means that the input retrieval problem is
comparable to an optimal control problem with restrictions on the oy final
state.

2.3 The optimal control problem

Consider the operator 7, defined as

T RIxP(wiRY) — P(w);R),

(z,(Ci)=n~n<i<o) +— (L,...,IN) (2.1)
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with [; = A4(;_, for alli € wN Land Iy = Ayz.

To solve this control problem, the Definitions 1, 2, and Proposition 2 are
firstly used [25].

DEFINITION 1.

a) On w, the system (E) is supposed to be exactly output controlled if Vxo €
R3 x 2(w” 5\ R?), Vy € P(wN;R), Fu € 12(wN~1;U) in order to Ayx; =
Yis 1€ W{V.

b) On w}, the system (E) is supposed to be weakly output controlled if Ve >
0, Vxo € R® x ?(w”p;R?), Wy € 2(wl¥;R), Ju such that ||Asx; —
YR < e

DEFINITION 2.

X

a) The system (E) is supposed to be 7-controllable on w{ if Vgy € R3
1?(w= _N, R?), Vye € 2(wlV;R), Fu € lz(wév_l; [0,1]) in order to Ton =
y.

b) The system (E) is supposed to be 7-weakly controllable on wi' if Ve >
0, Yoo € R3 x 2(w p;R?), Vy? € 2(wl;R), Ju such that ||[Ton —
Y2 (w5 R) < e

Based on the definition provided, it is easy to determine the following:
(i) (E) is exactly output controllable wi' < (El) is 7-controllable on wi';
(ii) (E) is weakly output controllable on wi¥ < (E;) is 7-weakly controllable

on wV.

Proposition 2. Assuming a desired output y¢ = (yi,...,y%) € P(w;R),
output controllability defined by

Finduj so that
(1) A4X1 = yéiv Vi€ w{vv (7’)
lui [I=inf{ lua ||/ ug verify (i)} (i)

and the T-controllability defined by

Find uj so that
(2) Toy =y? € P(w);R?), (4)
lui lI=inf{llua || / w2 verify (7)}  (4J)-

are eqivalantent and have the same solution uj.

According to Proposition 2, in order to resolve problems (1) and (2), we
have to find a control u* that ensures 7-controllability of system (F;) with a
low cost. Consider the following discrete system:

) - . 0: 4+ Ou; N—1
(El) { Qi+1 = fPQz.‘F Yioi +Ou; , 1 €Wy T,
00 is given,
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where o; € X = R? x [2(w”;R?) represents the system’s state (E;), and
u; € U = [0, 1] represents the control variable, ¢ € £L(X) and 6 € L(U,R?).
Given the following control problem: Assume a desired trajectory y¢ = (y¢,...
,y%), then identify the control u* that optimizes the functional of expense

J(u) = Jul®.

Regarding all controls satisfying 7on = y¢, o is the final state of system (E)
at instant N, and 7 is given by (2.1). The desired control is denoted as u*, and
the solution for the system (E7) is

1—1 1—1
0i = ¢'00 + Z P01+ Z ¢ Ou; 15, iE€w. (2.2)
=0 =0

Consider a linear operator L defined on 7 = ?(w]'; X) by

L: T=~>Fwhx) — T,
§=(&,....6n) — L&=(L&)r<i<n,

where

i—2
(L& = ¢ Moo+ @i b1y 2<i<N,

=0
(L& = oo.

Given € = (&)iewv € T with & = (zis Y3, 2, (V... ,Uf\,))T € X, then

—xoyo + fo
0
(Lg)l - 0 I
0,...,0)
and let’s denote
(1 —a)(=zoyo + fo) (1—a)~2(—=zoyo + fo)
Al = 0 , A2= 0
0 0
then )
(1—a)~*(—zoyo + fo)
0
I 0
(£8)i = —z0Y0 + fo
0,...,0, 0 JAL, ... A2
N—i+1

Math. Model. Anal., 30(3):514-534, 2025.
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1—2
Z (1= a) (—@i—1—j¥i—1—j + fi1-5)
7=0
0
0
—r1y1+f1 —Zoya+ fot+(1—a)(—z1y1+f1)
0,...,0, 0 , 0
N—it2 0 0
i—2
Z(l —a) M=z Y15+ fic1-j)
=1
0
0

i € wi¥. Consider the linear operator H defined on U by

H: U=7Pwy%0,1) — T,

u=(ug,...,un—1) +—— Hu,
where
i—1
(Hu)z = Z(pJ@ui_l_]‘, xS w{v.
§=0
We have Vi € w :
0
i—1 [j-1 .
D DI () L) RV
j=1 \ k=0
i—1
Z(l—d)juiflfj
j=1
0
0 0
0,...,0,] 0 |, cuo , uﬁ—Z (1-b)'*(1=d)*uo) |,
N—it1 uo (I=d)uo+us
(1 d) ’LLo—f—(l d)U1+UQ
0
i—17—2
Ui— 3+ZZ J 5= 2 (1—-4d)° | ui—1—;
L) j=3s=0
i—1 _
Dot —d  uiay
j=1

Thus, we may rewrite the Equation (2.2) as

0= (01,---,0n) = @00 + Lo+ Hu,




Enhancing blood glucose control through the fixed point theorem
where

P00 = (¢'00)1<i<n, KerH = {0}, (KerH)" =U = 1*(wy ", R),

Range(H) = {z = (%i)icwl € Pl X))z = A3

with  i€wl, B €R, oy =0 and O[H_l:C/BiJr(l*b)Oég},

where
0
73
Bi
A3 = ,
0 0
0, ,0, aq R R i1
N—i+1 51 Bi—l
Its inverse is defined by
H™ Range(H) — U,
0
Q5
Bi
z= —  H(z),
0 0
O,...,O7 ag geeey Qi—1
N—it1 B1 Bi-1

uo = f,

_ . N-1
ui—ﬁi“—(l—d)ﬂi, 1€ Wy .
We introduce the pseudo inverse operator of H

where H(z) = u/

H': 2 +y € Range(H) @Range(H)J‘ — H '(z) e U.

The operator H' is defined on all the space 7 because Range(H) is closed and we
have

HH'z = =z, Vx € Range(H),
H'Hy = y, Wyel.

3 Fixed point method

3.1 Description of optimal control

Assume y? = (y{,...,9y%) is a predefined output. This section aims to define a set of
all acceptable controls by examining the fixed points of a carefully selected function.
In particular, we will describe the set Uyq, which includes all controls that ensure
7-controllability

Uaa = {u € P(wy 1;[0,1]) / Ton =y},

where (go,...,on) is the trajectory which takes system from the initial state go. Let
p: T — Range(H) be any projection on Range(H) and g # 0 be any fixed element

Math. Model. Anal., 30(3):514-534, 2025.
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of Range(H), we define

fa: T — Range(H),

v _ ) 0, ifandonlyif Ton = y?,
e — filo)= { 0, otherwise
and let
& T — T,
e — &) =e—poo— Lo
Then,
(1 —a)'zo
i—1
(1=b)'yo+cY (1= (1—d) 'z
Jj=0 )
(1 — d)ZZ()
0 0 o (1—a)zo
(€(0))i=0i 0 [l O o [ (=blyotezo [0y
0 0 20 (1 —d)zo
—
N=i
(1 —a)tao
_ i—2 _
(1=b)"tyo+cy (1= (1 —d) 'z
Jj=0
(1 - d)Z_IZO
— (Lo

and we analyze the mapping

g: T — T,
o +— g(o) = @00+ Lo+ p&(e) + falo).

Next, we present the following proposition

Proposition 3. Let P, = {o € T / g(0) = o} represent the set of all fized points of
g. Then,

Uaa = | H'¢(0).

0EP,
Proof. Let ¢o* € Py, we have

g(0") = @oo + Lo" + p&(0™) + fs(0) = 0", (3.1)
then
0" — @oo — Lo* = pt(0™) + fa(o"),
which implies that
£(0") = p€(0") + fale") € Range(H),

that means p&(0*) = £(0*), and f5(0*) = 0 which carries that 7ok = y?. Thus, the
Equation (3.1) becomes

0" = oo+ Lo" +&(0%) = goo + Lo* + HH'¢(0"). (3.2)
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Let u* = H'¢(0*), with and g* € Py, then,
Hu* = HH'¢(o")
and from (3.2), we have
Hu" = HH'¢(0") = 0" — ¢o; — Lo,

which implies that

o = @o;+ Lo" + Hu",
Ton = y%,

thus u* € Uaq. Consequently, Vo € P,, we have H¢(9) C Uyq and

U HT&(Q) C uad~

0EPy

Finally, we demonstrate that U,q C UgePg HT¢(p). Let u* € Uaq and (sz* e 0% )
the trajectory of system (F7) corresponding to control u*, then

o = @oo+Le" + Hu',
{T@?v* = v
and
{ &) = Hu,
Ton =yt
Consequently,
{ £e*") = Hu* € Range(H),
fale™) = 0,
and

0" =¢oo+Lo" +pE(e" )+ fale" ) =g(e" ).
Then, g“* is a fixed point of the mapping of g, therefore
Z/[ad C U HT&(Q)
0€EPy
O
Remark 2. The fixed points of g do not depend on the selection of the projection p or

the element g. To illustrate, let p1 and p2 be two projections onto Range H, and let
01 and 92 be two non-zero elements from Range H. Now, consider the applications.

gl : T — 7—,
0 — g1(0) = @oo+ Lo+ p1&(0) + fa (0),

g2: T — T,
o — g2(0) = Poo + Lo+ p2£(0) + fz:(0)-

Let o be a fixed point of g;. According to the proof of Proposition 3, we have Ton = y
and £(o) € Range H, which implies p2£(0) = £(0) and f5, (¢) = 0. Therefore,

g2(0) = ¢oo + Lo+ &(0) = o

The results show that g is a fixed point of g». Likewise, by symmetry, it is clear that
the fixed points of g» are also fixed points of gi.

Math. Model. Anal., 30(3):514-534, 2025.
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3.2 Minimization problem

Based on the proposition above, we may define the set of admissible controls as Uyq.
We can then choose the controls that have the minimum norm, therefore resolving
the next problem

P omin (J(u) = ul®).

u€ Ugq
then,
Uaa = | H'¢(0),
0€Py
while P, the set of all fixed point of g, and U2, = H'¢(p)
therefore

= . . _ 2
P = Prglgg(uglglgd(J(U) = Jlull"))-

Remark 3. Let u € U°, then u = H'¢(p) . Thus

Jul® = <wu,u>=<H'¢("), H'¢(0:) >
= IH I
Then, we get
T(uw) = | H'¢(0)|*.
0
Let P € Range(H), 2= (0,0,...,b) with b = (1)
0,.../0)
And
0
P: P(wl, X) —  Range (H) 0
V=W,Va,...,Vn) — PV [ (PV)i= v}
(0,...,0)
with
(PV); =
0
vl g+ (L= by
of
0 0 ’
0,...,0,] 0 |, ecd+@—0b)i|,...,| e, +1—-bwi,
V3 v v,
Vi € wév.

Theorem 1. For y¢, Vi € wl¥, a desired output with constraint (1 —a)xo + zoyo +
fi = yi, optimal control allows for T-controllability, and the system’s ezact output
controllability (E) is provided by

Ug = 21 — (1 — d)ZO,
Ui = Zig1 — (1 — d)Zi, xS w{\f—l’
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where
d . N
T, =vy;, Vi€Euw,
(1—a)yd—ydy1+Fi . N-1
Yi = Zyd = ) Vi € Wy ’

k3
ir1—(1=b)y; . _
Yyit1—(1-b)y; Vi € w(z)\/ 2

Z; =
7 c b)

Proof. Looking at the proof with the fixed point expression: g(o) = o, with

T
Yi
Zi

(€-ny---€1)
which implies that

zi =Y o(1—a) (i1 yyi1—j + fisry) + (1 — a)'xo,
yi = czi—1 + (1 = b)yi—1,
z€R, Viewl.

The final constraint 7ony = (yf, . 7y%) implies that

d . N
v, =vy;, Vi€wr,

(1—a)yd—yd 1 +f; . N—1
yizibyd HLL D ViEew) T,
3
Yyit1—(1-b)y; . N-2
zi = %, ViEew, °,

the optimal control enable the system (E) to have exactly output controllability in-
dicated by u* = HT¢(0%), verify

U = 21 — (1 — d)207 ]
U = Zi4+1 — (1 — d)lJrlZo — (1 — d)(zl — (1 — d)ZZ()),

=zip1— (1 —d)z, i€wl

O

4 Numerical simulation

In this section, we conduct a numerical analysis of the system (E) to demonstrate the
analytic results obtained above. This study analyzes data from non-diabetic people
to assess the proposed system’s ability to closely track blood glucose levels. The data
used in this research was gathered from various people who do not have any history
of diabetes [36]. The data, which includes daily plasma glucose and insulin profiles, is
appropriate for evaluating the proposed system’s ability to accurately measure blood
glucose levels. The exogenous glucose injection is provided by

fi =0.3858 x (1 +0.33 x sin(3.14 x i/72)), i€ {l,..,N}.

The numerical findings are depicted in Figures 1-3. All simulations in this part were
executed using MATLAB (R2023). The parameters and data are available in the
articles [36], and [26]: a = 0.000296, b = 0.045, ¢ =0.000012, d=0.268, X =
g=6, Y =h=200, Z=£k=0.0533, and N = 500. The corresponding optimal
cost is u; = 53.63 and yi;=6 ic{l,.., N}

Math. Model. Anal., 30(3):514-534, 2025.
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Figure 1. Glucose dynamics change and the effect of insulin without control.

Without any control, Figure 1 represents the dynamics of glucose and insulin
concentrations in mmol/L over 500 days. The glucose concentration wave in the first
graph (g) begins at roughly 6 mmol/L and rises to less than 9 mmol/L as the peak
value after 50 days. Then it drops to its lowest point over the next 100 days before
rising to a maximum of exactly 9 mmol/L by 200 days. Later, the wave repeats its
pattern, going down and up for the entire period. The second figure (h) shows insulin
concentration in picomoles per liter (pmol/L), which drops exponentially from 0.065
pmol/L to 0.055 pmol/L in 100 days until stabilizing at nearly zero pmol/L for the
rest of the 400 days. The third graph (k) depicts insulin’s indirect impact on glucose
(/min), which increases exponentially from 200 to 200.1 in 30 days before remaining
steady at 200.15 for the rest of the 470 days. This suggests that the body’s insulin
sensitivity is declining with time. In general, we can see from Figure 1 that glucose
is influenced by insulin levels, while the effect of insulin on glucose varies over time.
Furthermore, the effect of glucose is inversely proportional to insulin concentration,
and it is clear that insulin concentration has a positive effect on glucose concentration.

350 00 50 500

250
‘Time(days)

Glucose (k)
T T

250 350 00 50 500
Time(days)

Figure 2. Glucose dynamics change and the effect of insulin with control.

By implementing control, Figure 2 highlights the positive impact of regulated insulin
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delivery on glucose regulation over the same 500-day duration. Graph (g) clearly
shows that the glucose concentration is effectively kept within a narrower range,
varying between 5.94 mmol/L and 6.07 mmol/L during a period of 450 days. This
represents a significant improvement over Figure 1, with glucose levels consistently
within or very close to the normal fasting range. This improvement is due to the
controlled sinusoidal pattern of insulin concentration, as illustrated in the second
graph (h) shows insulin concentration in picomoles per liter (pmol/L), which ranges
from approximately 0.04 to 0.08 pmol/L. This improvement is attributed to the con-
trolled sinusoidal pattern of insulin concentration (h), ranging from approximately
0.04 pmol/L to 0.08 pmol/L. As shown in the third graph (k) depicts insulin’s indi-
rect impact on glucose, an increased and regulated indirect effect on glucose is the
outcome of this regulated insulin administration, and it displays a distinct cyclical
pattern between approximately 110 and 350. Overall, the two figures demonstrate
that controlling insulin levels can be helpful in maintaining stable blood glucose levels.
Figure 1 shows that when insulin is not actively regulated, glucose oscillates more sig-
nificantly. While Figure 2 shows that active insulin control yields more stable glucose
levels and fewer significant oscillations.

(u1)
T

I I I I I
o 50 100 150 200 250 300 350 400 450 500
Time(days)

Figure 3. Control curve for the function wu;.

For the function u;, which repeats its cycle at regular intervals, typically every 125
days, Figure 3 shows the periodic pattern with a maximum value of around 95 and a
low value of about 35.

4.1 Glucose regulation models: a comparative analysis

Our work and that of Lui et al. [26] both deal with mathematical models of blood
glucose levels, but they use different approaches and make different assumptions. The
statistics from the American Diabetes Association (ADA) are compared in Figure 4
and Table 2. The American Diabetes Association (ADA) has established 24-hour
blood glucose level recommendations for both healthy and sick individuals, measured
in millimoles per milliliter. In scientific research, differential equations often repre-
sent the processing and absorption of glucose. We may learn a lot by comparing the
approaches and assumptions used in these equations. This study’s results were com-
pared to those of Liu et al. [26], who investigated hyperglycemia by the manipulation
of blood glucose levels. In our results, as shown in Table 3, the glucose levels are
within the normal fasting range, while Table 4 shows higher levels above the nor-
mal range, indicating poor glucose control. Table 3 shows a relatively stable insulin

Math. Model. Anal., 30(3):514-534, 2025.
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concentration, peaking at 90 pmol/L and returning to 80 pmol/L by the end of the
24-hour period. The insulin concentration in Table 4 is much higher, peaking at
250 pmol/L. This could mean that the body is responding strongly to insulin, which
could cause low blood sugar or other problems. Table 3 demonstrates more effective
and stable control of blood glucose levels, while Table 4 shows higher glucose levels,
suggesting poor insulin administration and potential hyperglycemia. The proposed
mathematical model, which utilizes a fixed-point theorem for control, is superior in
maintaining stable glucose levels compared to Table 4. The findings emphasize the
importance of controlled insulin delivery for optimal blood glucose regulation, crucial
for effective diabetes management. Our novel approach, primarily based on the fixed
point method, yielded quantitatively presented results indicating that the blood glu-
cose level falls within the world health organization’s reported range of 5.95 mmol/L
to 6.07 mmol/L.

Blood Glucose (mmol/L)

10 15 20 25
Time (hours)

Figure 4. Comparison of blood Glucose Levels over one day (mmol/L) from the
American Diabetes Association (ADA).

Table 2. Comparison of Blood Glucose Levels (mmol/L) over 24 hours from the American
Diabetes Association (ADA).

Time (hours) Glucose (Normal, mmol/L)  Glucose (Sick, mmol/L)

0.00 5.45 8.68
6.00 6.95 11.11
12.00 5.20 7.56
18.00 4.85 6.95

24.00 5.45 8.68
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Table 3. Concentrations of glucose (mmol/L) and insulin(pmol/L) in this
research article.

Time (h) Glucose Concentration Insulin Concentration

0 5.0 80
4 5.5 85
8 6.0 90
12 5.7 88
16 5.3 82
20 4.9 78
24 5.0 80

Table 4. Concentrations of glucose (mmol/L) and insulin (pmol/L) over
a 24-hour period, Liu et al. [26].

Time (h) Glucose Concentration Insulin Concentration

0 7.0 100
4 8.0 150
8 10.0 200
12 9.0 250
16 8.5 200
20 7.5 150
24 7.0 100

5 Conclusions

This research successfully presented and analyzed a mathematical nonlinear discrete
model of diabetes mellitus that describes the role of insulin in glucose regulation in
the body. It is important to understand how to regulate insulin more effectively
in the treatment of diabetes. Our goal is to regulate the levels of glucose in the
blood by applying control strategies. We investigate the proposed framework for
glucose and insulin dynamics both analytically and numerically. We can characterize
the set of admissible controls with an appropriate mapping through an application
based on the fixed point theorem. We applied the output controllability problem to
a nonlinear discrete distributed system with energy constraints. The concept that we
used in this study allows us to approximate the curve of statistics produced in the
study to the curve of real statistics while maintaining a minimal to non-existent error
rate. The results of this study and the theories we used in this work, was effective
in maintaining insulin and blood glucose balance. We investigated the efficacy of
the optimal control technique in tracking blood glucose using numerical simulation,

Math. Model. Anal., 30(3):514-534, 2025.
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which significantly reduced blood glucose fluctuations. Our research offers helpful
insights into the modeling of diabetes as well as a framework for developing treatment
strategies effectively. It suggests improving care and quality of life for diabetics.
Future work for this study could be opened to many topics, adding more obstacles in
models, and this study can be applied to delayed models.
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