A priori estimate and existence of solutions with symmetric derivatives for a third-order two-point boundary value problem

    Sergey Smirnov Info

Abstract

We study a priori estimate, existence, and uniqueness of solutions with symmetric derivatives for a third-order boundary value problem. The main tool in the proof of our existence result is Leray-Schauder continuation principle. Two examples are included to illustrate the applicability of the results.

Keywords:

nonlinear boundary value problems, a priori estimate of solutions, existence of solutions, uniqueness of solution, Leray-Schauder continuation principle

How to Cite

Smirnov, S. (2025). A priori estimate and existence of solutions with symmetric derivatives for a third-order two-point boundary value problem. Mathematical Modelling and Analysis, 30(1), 159–168. https://doi.org/10.3846/mma.2025.21412

Share

Published in Issue
January 27, 2025
Abstract Views
254

References

Md. Asaduzzaman and Md. Zulfikar Ali. On the symmetric positive solutions of nonlinear fourth order ordinary differential equations with four-point boundary value conditions: a fixed point theory approach. J. Nonlinear Sci. Appl., 13(6):364–377, 2020. https://doi.org/10.22436/jnsa.013.06.06"> https://doi.org/10.22436/jnsa.013.06.06

K. Bingelė, A. Bankauskienė and A. Štikonas. Investigation of spectrum curves for a Sturm-Liouville problem with two-point nonlocal boundary conditions. Math. Model. Anal., 25(1):37–52, 2020. https://doi.org/10.3846/mma.2020.10787"> https://doi.org/10.3846/mma.2020.10787

K. Bingelė and A. Štikonas. Investigation of a discrete Sturm-Liouville problem with two-point nonlocal boundary condition and natural approximation of a derivative in boundary condition. Math. Model. Anal., 29(2):309–330, 2024. https://doi.org/10.3846/mma.2024.19829"> https://doi.org/10.3846/mma.2024.19829

M. Feng. Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions. Appl. Math. Lett., 24(8):1419–1427, 2011. https://doi.org/10.1016/j.aml.2011.03.023"> https://doi.org/10.1016/j.aml.2011.03.023

J.R. Graef, L. Kong and Q. Kong. Symmetric positive solutions of nonlinear boundary value problems. J. Math. Anal. Appl., 326(2):1310–1327, 2007. https://doi.org/10.1016/j.jmaa.2006.03.064"> https://doi.org/10.1016/j.jmaa.2006.03.064

C.P. Gupta and V. Lakshmikantham. Existence and uniqueness theorems for a third-order three-point boundary value problem. Nonlinear Anal., 16(11):949– 957, 1991. https://doi.org/10.1016/0362-546X(91)90099-M"> https://doi.org/10.1016/0362-546X(91)90099-M

B. Hopkins and N. Kosmatov. Third-order boundary value problems with sign-changing solutions. Nonlinear Anal., 67(1):126–137, 2007. https://doi.org/10.1016/j.na.2006.05.003"> https://doi.org/10.1016/j.na.2006.05.003

N. Kosmatov. Second order boundary value problems on an unbounded domain. Nonlinear Anal., 68(4):875–882, 2008. https://doi.org/10.1016/j.na.2006.11.043"> https://doi.org/10.1016/j.na.2006.11.043

X. Lin and Z. Zhao. Existence and uniqueness of symmetric positive solutions of 2n-order nonlinear singular boundary value problems. Appl. Math. Lett., 26(7):692–698, 2013. https://doi.org/10.1016/j.aml.2013.01.007"> https://doi.org/10.1016/j.aml.2013.01.007

Y. Luo and Z. Luo. Symmetric positive solutions for nonlinear boundary value problems with ϕ-Laplacian operator. Appl. Math. Lett., 23(6):657–664, 2010. https://doi.org/10.1016/j.aml.2010.01.027"> https://doi.org/10.1016/j.aml.2010.01.027

Y. Luo and Z. Luo. A necessary and sufficient condition for the existence of symmetric positive solutions of higher-order boundary value problems. Appl. Math. Lett., 25(5):862–868, 2012. https://doi.org/10.1016/j.aml.2011.10.033"> https://doi.org/10.1016/j.aml.2011.10.033

K. Pupalaigė, M. Sapagovas and R. Čiupaila. Nonlinear elliptic equation with nonlocal integral boundary condition depending on two parameters. Math. Model. Anal., 27(4):610–628, 2022. https://doi.org/10.3846/mma.2022.16209"> https://doi.org/10.3846/mma.2022.16209

S. Roman and A. Štikonas. Third-order linear differential equation with three ad-ditional conditions and formula for Green’s function. Lith. Math. J., 50(4):426– 446, 2010. https://doi.org/10.1007/s10986-010-9097-x"> https://doi.org/10.1007/s10986-010-9097-x

Y. Sun. Existence and multiplicity of symmetric positive solutions for threepoint boundary value problem. J. Math. Anal. Appl., 329(2):998–1009, 2007. https://doi.org/10.1016/j.jmaa.2006.07.001"> https://doi.org/10.1016/j.jmaa.2006.07.001

A. Štikonas. A survey on stationary problems, Green’s functions and spectrum of Sturm-Liouville problem with nonlocal boundary conditions. Nonlinear Anal. Model. Control, 19(3):301–334, 2014. https://doi.org/10.15388/NA.2014.3.1"> https://doi.org/10.15388/NA.2014.3.1

A. Štikonas and E. Şen. Asymptotic analysis of Sturm-Liouville problem with Dirichlet and nonlocal two-point boundary conditions. Math. Model. Anal., 28(2):308–329, 2023. https://doi.org/10.3846/mma.2023.17617"> https://doi.org/10.3846/mma.2023.17617

E. Zeidler. Nonlinear functional analysis and its applications I. Fixed-point theorems. Springer-Verlag, New York, 1986.

X. Zhang and W. Ge. Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl. Math. Comput., 219(8):3553–3564, 2012. https://doi.org/10.1016/j.amc.2012.09.037"> https://doi.org/10.1016/j.amc.2012.09.037

View article in other formats

CrossMark check

CrossMark logo

Published

2025-01-27

Issue

Section

Articles

How to Cite

Smirnov, S. (2025). A priori estimate and existence of solutions with symmetric derivatives for a third-order two-point boundary value problem. Mathematical Modelling and Analysis, 30(1), 159–168. https://doi.org/10.3846/mma.2025.21412

Share