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Abstract. We study a priori estimate, existence, and uniqueness

of solutions with symmetric derivatives for a third-order boundary

value problem. The main tool in the proof of our existence result is

Leray-Schauder continuation principle. Two examples are included

to illustrate the applicability of the results.
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1 Introduction

We study the third-order nonlinear differential equation

x′′′ = f(t, x, x′, x′′), t ∈ (0, 1), (1.1)

subject to the boundary conditions

x(0) = 0, x(1) = 0, x′(t) = x′(1− t). (1.2)

Throughout the paper we assume that f : [0, 1] × R3 → R is continuous,
f(t, 0, 0, 0) ̸≡ 0 for t ∈ [0, 1] to exclude the existence of the trivial solution, and

f(1− t,−x, x′,−x′′) = f(t, x, x′, x′′) for (t, x, x′, x′′) ∈ [0, 1]× R3.

By a solution of (1.1)–(1.2) we mean C3[0, 1] function that satisfies differential
equation (1.1) for 0 < t < 1 and boundary conditions (1.2).

The purpose of the paper is to obtain existence and uniqueness theorems
for (1.1)–(1.2). For the existence result we get a priory estimate for solutions
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and apply the Leray-Schauder continuation principle [17]. For the uniqueness
result we use estimates for a solution and its first and second derivatives. Let
us recall the Leray-Schauder continuation principle here.

Theorem 1. Let X be a Banach space and T : X → X be a completely contin-
uous operator (T is continuous and maps bounded sets into relatively compact
sets). Suppose that there exists an r > 0 such that if x = λTx for λ ∈ (0, 1),
then ∥x∥ ≤ r. Then T has a fixed point.

Actually, our main results state that under certain growth conditions on the
function f , problem (1.1)–(1.2) has at least one nontrivial solution or has ex-
actly one nontrivial solution.

In order to obtain the existence result, we first rewrite problem (1.1)–(1.2)
as an equivalent integral equation. Then, we define an operator in a suitable
set of functions, and hence the problem turns to prove that the operator has a
fixed point. In the end, we show the existence of a fixed point by establishing
an a priori estimate for a solution and its first and second derivatives.

The study of the existence of solutions to boundary value problems often
involves rewriting the problem as an equivalent integral equation by the con-
struction of the corresponding Green’s functions. A survey of results on the
Green’s functions for stationary problems with nonlocal boundary conditions
is presented in [15]. Green’s functions for third-order boundary value problems
with different additional conditions were studied in [13].

The nonlocal nature of boundary conditions (1.2) is attributed to the fact
that the boundary conditions specify solution values not just at the ends of the
interval, but also inside the interval. Papers [2, 3, 12, 16] contain some recent
achievements in the field of nonlocal problems.

The Leray-Schauder continuation principle is a very effective and widely
applied tool of nonlinear functional analysis, also in view of its applicability to
boundary value problems for ordinary differential equations. For instance, the
Leray-Schauder continuation principle was used in the papers [6, 7, 8], which
motivated the present investigation.

There are several reasons why problem (1.1)–(1.2) should be studied. First,
various fields of physics encounter third-order boundary value problems. Heat
power transmission theory, deflection of a curved beam are just some of the
topics covered. Second, the importance of boundary value problems with sym-
metric solutions has made them more popular in recent years due to their es-
sential role in different branches of applied mathematics. In [4], the existence of
symmetric positive solutions for a 2n-order nonlinear ordinary differential equa-
tion with integral boundary conditions by applying the theory of fixed point
index in cones is studied. In [5], the existence of symmetric positive solutions
to higher-order problems is discussed. Authors obtain sufficient conditions for
the problem to have one, any finite number, and a countably infinite number
of such solutions. In [9], by applying an iterative technique, a necessary and
sufficient condition is obtained for the existence of symmetric positive solutions
of second-order nonlinear singular boundary value problems. In [10], authors
prove the existence, multiplicity, and nonexistence of symmetric positive so-
lutions to nonlinear boundary value problems with the Laplacian operator.
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The analysis mainly relies on the fixed point theorem of cone expansion and
compression of norm type. In [11], a necessary and sufficient condition for
the existence of symmetric positive solutions to higher-order nonlinear bound-
ary value problems is obtained. The analysis relies on the monotone iterative
technique. In [14], authors are concerned with the existence and multiplic-
ity of symmetric positive solutions for a second-order three-point boundary
value problem. In [18], authors establish various results on the existence and
nonexistence of symmetric positive solutions to fourth-order boundary value
problems with integral boundary conditions. The arguments are based upon
a specially constructed cone and the fixed point theory in a cone. In [1], au-
thors study symmetric positive solutions of a nonlinear fourth-order four-point
boundary value problem. It is important to note that solutions to boundary
value problems with symmetric derivatives are not enough investigated. The
present paper is an attempt to decrease this gap. The next reason is that
the nonlinear term in our problem has first and second derivative dependence.
When f depends explicitly on x′ and x′′ there is no unified theory to study such
problems.

The paper contains four sections besides the Introduction. In Section 2, we
rewrite the main problem as an equivalent integral equation and prepare some
technical details for application to our main results. In Section 3, we prove
our existence theorem and give an illustrative example. In Section 4, we prove
our uniqueness theorem and provide an example to illustrate the result. In
Section 5, we give the conclusion.

2 Equivalent integral equation

Proposition 1. A function x = x(t) is a solution of boundary value problem
(1.1)–(1.2) if and only if x is a solution of the integral equation

x(t) =

∫ t

0

1

4

(
2s2 − t

)
(1− t) f(s, x(s), x′(s), x′′(s))ds

+

∫ 1

t

1

4
t (2(2− s)s− 1− t) f(s, x(s), x′(s), x′′(s))ds. (2.1)

Moreover,

x′(t) =

∫ t

0

1

4

(
2t− 2s2 − 1

)
f(s, x(s), x′(s), x′′(s))ds

+

∫ 1

t

1

4

(
1− 2t− 2(1− s)2

)
f(s, x(s), x′(s), x′′(s))ds,

x′′(t) =

∫ t

0

1

2
f(s, x(s), x′(s), x′′(s))ds−

∫ 1

t

1

2
f(s, x(s), x′(s), x′′(s))ds.

By a solution of (2.1) we understand C2[0, 1] function that satisfies integral
equation (2.1) for 0 ≤ t ≤ 1.
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Proof. Suppose that x(t) is a solution to problem (1.1)–(1.2), then x′′′(t) =
f(t, x(t), x′(t), x′′(t)) or x′′′(t) = h(t), where h(t) ≡ f(t, x(t), x′(t), x′′(t)). In-
tegrating the equation x′′′(t) = h(t) thrice, we get

x′′(t) =x′′(0) +

∫ t

0

h(s)ds,

x′(t) =x′(0) + t x′′(0) +

∫ t

0

(t− s)h(s)ds,

x(t) =x(0) + t x′(0) +
1

2
t2x′′(0) +

1

2

∫ t

0

(t− s)2h(s)ds.

Since x′(t) = x′(1 − t), we get x′′(t) = −x′′(1 − t), x(t) = −x(1 − t), h(t) =
h(1− t) for t ∈ [0, 1], and

x′′(0) +

∫ t

0

h(s)ds = −x′′(0)−
∫ 1−t

0

h(s)ds.

Therefore,

x′′(0) =− 1

2

∫ t

0

h(s)ds− 1

2

∫ 1−t

0

h(s)ds

=− 1

2

∫ t

0

h(s)ds− 1

2

∫ 1

t

h(s)ds = −1

2

∫ 1

0

h(s)ds.

Since x(0) = 0, we have

x(t) = t x′(0)− 1

4
t2
∫ 1

0

h(s)ds+
1

2

∫ t

0

(t− s)2h(s)ds.

Since x(1) = 0, we get

x′(0) =
1

4

∫ 1

0

h(s)ds− 1

2

∫ 1

0

(1− s)2h(s)ds

and hence

x(t) =
1

4
t

∫ 1

0

h(s)ds− 1

2
t

∫ 1

0

(1− s)2h(s)ds− 1

4
t2
∫ 1

0

h(s)ds+
1

2

∫ t

0

(t− s)2h(s)ds

=

∫ 1

0

(
−1

4
t (1 + 2(−2 + s)s+ t)

)
h(s)ds+

1

2

∫ t

0

(t− s)2h(s)ds

=

∫ t

0

(
−1

4
t (1 + 2(−2 + s)s+ t) +

1

2
(t− s)2

)
h(s)ds

+

∫ 1

t

(
−1

4
t (1 + 2(−2 + s)s+ t)

)
h(s)ds

=

∫ t

0

1

4

(
2s2 − t

)
(1− t)h(s)ds+

∫ 1

t

1

4
t (2(2− s)s− 1− t)h(s)ds

or x(t) is a solution of (2.1).
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Now let x(t) be a solution of integral equation (2.1). To show that x(t) is a
solution to problem (1.1)–(1.2), one can differentiate thrice equation (2.1) and
verify the continuity. ⊓⊔

Proposition 2. If x(t) is a solution of boundary value problem (1.1)–(1.2),
then,

|x(t)| ≤ 1

16

∫ 1

0

|f(s, x(s), x′(s), x′′(s))|ds,

|x′(t)| ≤1

4

∫ 1

0

|f(s, x(s), x′(s), x′′(s))|ds,

|x′′(t)| ≤1

2

∫ 1

0

|f(s, x(s), x′(s), x′′(s))|ds, t ∈ [0, 1].

Proof. Let h(t) ≡ f(t, x(t), x′(t), x′′(t)). For all t ∈ [0, 1], we have

|x(t)| ≤1

4

∫ t

0

|2s2 − t|(1− t) |h(s)|ds+ 1

4

∫ 1

t

t |2(2− s)s− 1− t| |h(s)|ds

≤1

4
max

0≤s≤t≤1

{
|2s2 − t|(1− t)

}∫ t

0

|h(s)|ds

+
1

4
max

0≤t≤s≤1

{
t |2(2− s)s− 1− t|

}∫ 1

t

|h(s)|ds

=
1

16

∫ t

0

|h(s)|ds+ 1

16

∫ 1

t

|h(s)|ds = 1

16

∫ 1

0

|h(s)|ds,

|x′(t)| ≤1

4

∫ t

0

|2t− 2s2 − 1||h(s)|ds+ 1

4

∫ 1

t

|1− 2t− 2(1− s)2||h(s)|ds

≤1

4
max

0≤s≤t≤1

{
|2t− 2s2 − 1|

}∫ t

0

|h(s)|ds

+
1

4
max

0≤t≤s≤1

{
|1− 2t− 2(1− s)2|

}∫ 1

t

|h(s)|ds

=
1

4

∫ t

0

|h(s)|ds+ 1

4

∫ 1

t

|h(s)|ds = 1

4

∫ 1

0

|h(s)|ds,

|x′′(t)| ≤1

2

∫ t

0

|h(s)|ds+ 1

2

∫ 1

t

|h(s)|ds = 1

2

∫ 1

0

|h(s)|ds.

⊓⊔

3 A priori estimate and existence of solutions

Theorem 2. If there exist continuous functions α, β, γ, δ : [0, 1] → [0,+∞),
such that

|f(t, x, x′, x′′)| ≤ α(t) |x|+β(t) |x′|+γ(t) |x′′|+δ(t) for (t, x, x′, x′′) ∈ [0, 1]×R3,
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and

1

16

∫ 1

0

α(s)ds+
1

4

∫ 1

0

β(s)ds+
1

2

∫ 1

0

γ(s)ds < 1,

then, boundary value problem (1.1)–(1.2) has at least one nontrivial solution.

Proof. Let X=C2[0, 1] with the norm ∥x∥=max
{
∥x∥∞, ∥x′∥∞, ∥x′′∥∞

}
,

where ∥u∥∞ = max
t∈[0,1]

|u(t)| and define the operator T : X → X by

(Tx)(t) =

∫ t

0

1

4

(
2s2 − t

)
(1− t) f(s, x(s), x′(s), x′′(s))ds

+

∫ 1

t

1

4
t (2(2− s)s− 1− t) f(s, x(s), x′(s), x′′(s))ds, t ∈ [0, 1].

T is completely continuous by application of Arzelà-Ascoli theorem. It is nec-
essary to show that operator T has a fixed point. Let λ ∈ (0, 1] and consider

x′′′ = λ f(t, x, x′, x′′), t ∈ (0, 1) (3.1)

subject to boundary conditions (1.2). Our goal is to demonstrate that the set
of all possible solutions of (3.1),(1.2) is a priori bounded in X by a constant
that does not depend on λ. We include the case λ = 1, to get an estimate
for solutions to problem (1.1)–(1.2). Let x(t) be a solution of (3.1),(1.2) and
consider∫ 1

0

|x′′′(s)|ds = λ

∫ 1

0

|f(s, x(s), x′(s), x′′(s))|ds ≤
∫ 1

0

|f(s, x(s), x′(s), x′′(s))|ds

≤
∫ 1

0

(
α(s) |x(s)|+ β(s) |x′(s)|+ γ(s) |x′′(s)|+ δ(s)

)
ds

=

∫ 1

0

α(s) |x(s)|ds+
∫ 1

0

β(s) |x′(s)|ds+
∫ 1

0

γ(s) |x′′(s)|ds+
∫ 1

0

δ(s)ds

≤ 1

16

∫ 1

0

|x′′′(s)|ds
∫ 1

0

α(s)ds+
1

4

∫ 1

0

|x′′′(s)|ds
∫ 1

0

β(s)ds

+
1

2

∫ 1

0

|x′′′(s)|ds
∫ 1

0

γ(s)ds+

∫ 1

0

δ(s)ds.

Hence,

∫ 1

0

|x′′′(s)|ds ≤

∫ 1

0

δ(s)ds

1− 1

16

∫ 1

0

α(s)ds− 1

4

∫ 1

0

β(s)ds− 1

2

∫ 1

0

γ(s)ds

= r.
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It follows that

|x(t)| ≤ 1

16

∫ 1

0

|λ f(s, x(s), x′(s), x′′(s))|ds = 1

16

∫ 1

0

|x′′′(s)|ds ≤ 1

16
r,

|x′(t)| ≤1

4

∫ 1

0

|λ f(s, x(s), x′(s), x′′(s))|ds = 1

4

∫ 1

0

|x′′′(s)|ds ≤ 1

4
r,

|x′′(t)| ≤1

2

∫ 1

0

|λ f(s, x(s), x′(s), x′′(s))|ds = 1

2

∫ 1

0

|x′′′(s)|ds ≤ 1

2
r, t ∈ [0, 1].

According to these estimates, the set of all possible solutions of (3.1),(1.2)
is a priori bounded in X or ∥x∥ = max

{
∥x∥∞, ∥x′∥∞, ∥x′′∥∞

}
≤ 1/2 r and

therefore, by Theorem 1, T has a fixed point. ⊓⊔

Remark 1. An estimate in the norm for the nontrivial solution of (1.1)–(1.2)
was obtained during the proof of Theorem 2.

Example 1. Consider boundary value problem for the differential equation

x′′′ =t(1− t)
x3 sinx

1 + x2
+ (2t− 1)2

(
x′ − 2 arctanx′)+(√1 + (x′′)2 − 1

)
+23,

t ∈ (0, 1), (3.2)

with boundary conditions (1.2). The function f(t, x, x′, x′′) = t(1− t) x3 sin x
1+x2

+(2t− 1)2
(
x′ − 2 arctanx′)+ (√1 + (x′′)2 − 1

)
+ 23 is continuous for

(t, x, x′, x′′) ∈ [0, 1]× R3, and f(t, 0, 0, 0) ̸≡ 0 for t ∈ [0, 1]. We have
f(1− t,−x, x′,−x′′) = f(t, x, x′, x′′) for all (t, x, x′, x′′) ∈ [0, 1]× R3. Consider

|f(t, x, x′, x′′)| ≤ t(1− t)
|x|x2 | sinx|

1 + x2
+ (2t− 1)2|x′|

∣∣∣∣x′ − 2 arctanx′

x′

∣∣∣∣
+ |x′′|

∣∣∣∣∣
√
1 + (x′′)2 − 1

x′′

∣∣∣∣∣+ 23 ≤ t(1− t) |x|+ (2t− 1)2 |x′|+ |x′′|+ 23.

We have

α(t) = t(1− t), β(t) = (2t− 1)2, γ(t) = 1, δ(t) = 23,

1

16

∫ 1

0

α(s)ds+
1

4

∫ 1

0

β(s)ds+
1

2

∫ 1

0

γ(s)ds =
19

32
< 1.

Thus, by Theorem 2, problem (3.2),(1.2) has at least one nontrivial solution
x(t), which together with its derivatives x′(t) and x′′(t) is depicted in Figures 1,
2, 3. These figures were obtained by using the program Wolfram Mathematica
11.1. The initial conditions for this solution are x(0) = 0, x′(0) ≈ 2.24838,
x′′(0) ≈ −14.344. We have the following estimates

|x(t)| ≤ 1

16
r =

46

13
, |x′(t)| ≤ 1

4
r =

184

13
, |x′′(t)| ≤ 1

2
r =

368

13
.
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-0.2
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0.1

0.2

x(t)

Figure 1. Solution x(t).

0.2 0.4 0.6 0.8 1.0
t

-1

1

2

x'(t)

Figure 2. Derivative
x′(t).

0.2 0.4 0.6 0.8 1.0
t

-15

-10

-5

5

10

15
x''(t)

Figure 3. Derivative
x′′(t).

4 Uniqueness of solution

Theorem 3. If there exist continuous functions p, q, r : [0, 1] → [0,+∞), such
that

|f(t, x, x′, x′′)− f(t, y, y′, y′′)| ≤ p(t) |x− y|+ q(t) |x′ − y′|+ r(t) |x′′ − y′′|
for (t, x, x′, x′′), (t, y, y′, y′′) ∈ [0, 1]× R3,

and
1

16

∫ 1

0

p(s)ds+
1

4

∫ 1

0

q(s)ds+
1

2

∫ 1

0

r(s)ds < 1,

then boundary value problem (1.1)–(1.2) has exactly one nontrivial solution.

Proof. If y = y′ = y′′ = 0, we get

|f(t, x, x′, x′′)| ≤ p(t) |x|+ q(t) |x′|+ r(t) |x′′|+ |f(t, 0, 0, 0)|

for (t, x, x′, x′′) ∈ [0, 1]×R3. Hence, in view of Theorem 2, boundary value prob-
lem (1.1)–(1.2) has at least one nontrivial solution. To prove the uniqueness of
a solution, let x(x), y(t) be two solutions for (1.1)–(1.2). If u(t) = x(t)− y(t),
we get

u′′′(t) =f(t, x(t), x′(t), x′′(t))− f(t, y(t), y′(t), y′′(t)),

u(0) =0, u(1) = 0, u′(t) = u′(1− t).

Let us consider∫ 1

0

|u′′′(s)|ds =
∫ 1

0

|f(s, x(s), x′(s), x′′(s))− f(s, y(s), y′(s), y′′(s))|ds

≤
∫ 1

0

p(s) |u(s)|ds+
∫ 1

0

q(s) |u′(s)|ds+
∫ 1

0

r(s) |u′′(s)|ds

≤ 1

16

∫ 1

0

|u′′′(s)|ds
∫ 1

0

p(s)ds+
1

4

∫ 1

0

|u′′′(s)|ds
∫ 1

0

q(s)ds

+
1

2

∫ 1

0

|u′′′(s)|ds
∫ 1

0

r(s)ds

=

∫ 1

0

|u′′′(s)|ds

(
1

16

∫ 1

0

p(s)ds+
1

4

∫ 1

0

q(s)ds+
1

2

∫ 1

0

r(s)ds

)
.
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It follows that

∫ 1

0

|u′′′(s)|ds = 0 for every s ∈ [0, 1], and hence u(t) = 0 for

every t ∈ [0, 1]. We get that x(t) = y(t) for every t ∈ [0, 1]. ⊓⊔

Example 2. Let us now consider boundary value problem for the linear differ-
ential equation

x′′′ = 1, t ∈ (0, 1), (4.1)

with boundary conditions (1.2). Problem (4.1),(1.2) meets all the requirements
of Theorem 3 and therefore has exactly one nontrivial solution. Since the
equation is linear, it is not difficult to verify, that the unique solution of the

problem is x(t) =
1

12

(
t− 3t2 + 2t3

)
.

5 Conclusions

We have proved the existence of solutions with symmetric derivatives for bound-
ary value problem (1.1)–(1.2) by obtaining an a priori estimate for solutions
and their first and second derivatives and applying Leray-Schauder continua-
tion principle. The nontrivial solution of (1.1)–(1.2) was estimated in the norm
during the proof of our existence theorem. Also, we have proved the existence
of a unique solution to (1.1)–(1.2). Illustrative examples (3.2) and (4.1) were
provided to show the applicability of the obtained results.

References

[1] Md. Asaduzzaman and Md. Zulfikar Ali. On the symmetric positive solutions
of nonlinear fourth order ordinary differential equations with four-point bound-
ary value conditions: a fixed point theory approach. J. Nonlinear Sci. Appl.,
13(6):364–377, 2020. https://doi.org/10.22436/jnsa.013.06.06.
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