A two-derivative time integrator for the Cahn-Hilliard equation

    Eleni Theodosiou Info
    Carina Bringedal Info
    Jochen Schütz Info
DOI: https://doi.org/10.3846/mma.2024.20646

Abstract

This paper presents a two-derivative energy-stable method for the Cahn-Hilliard equation. We use a fully implicit time discretization with the addition of two stabilization terms to maintain the energy stability. As far as we know, this is the first time an energy-stable multiderivative method has been developed for phase-field models. We present numerical results of the novel method to support our mathematical analysis. In addition, we perform numerical experiments of two multiderivative predictor-corrector methods of fourth and sixth-order accuracy, and we show numerically that all the methods are energy stable.

Keywords:

multiderivative methods, high-order methods, Cahn-Hilliard equation, energy-stable methods

How to Cite

Theodosiou, E., Bringedal, C., & Schütz, J. (2024). A two-derivative time integrator for the Cahn-Hilliard equation. Mathematical Modelling and Analysis, 29(4), 714–730. https://doi.org/10.3846/mma.2024.20646

Share

Published in Issue
November 22, 2024
Abstract Views
299

References

A. Abdi, G. Hojjati and M. Sharifi. Implicit–explicit second derivative diagonally implicit multistage integration methods. Computational and Applied Mathematics, 39(3), 2020. https://doi.org/10.1007/s40314-020-01252-1"> https://doi.org/10.1007/s40314-020-01252-1

V.E. Badalassi, H.D. Ceniceros and S. Banerjee. Computation of multiphase systems with phase field models. Journal of Computational Physics, 190(2):371– 397, 2003. https://doi.org/10.1016/S0021-9991(03)00280-8"> https://doi.org/10.1016/S0021-9991(03)00280-8

F. Bai, X. He, X. Yang, R. Zhou and C. Wang. Three dimensional phasefield investigation of droplet formation in microfluidic flow focusing devices with experimental validation. International Journal of Multiphase Flow, 93:130–141, 2017. https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.008"> https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.008

A.R. Balakrishna and C.W. Carter. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys. Physical Review E, 97(4):043304, 2018. https://doi.org/10.1103/PhysRevE.97.043304"> https://doi.org/10.1103/PhysRevE.97.043304

M. Biskup, L. Chayes and R. Kotecký. On the formation/dissolution of equilibrium droplets. Europhysics Letters, 60(1):21–27, 2002. https://doi.org/10.1209/epl/i2002-00312-y"> https://doi.org/10.1209/epl/i2002-00312-y

J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28(2):258–267, 1958. https://doi.org/10.1063/1.1744102"> https://doi.org/10.1063/1.1744102

K. Cheng, C. Wang, S.M. Wise and X. Yue. A Second-Order, Weakly EnergyStable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and its Solution by the Homogeneous Linear Iteration Method. J. Sci. Comput., 69(3):1083–1114, 2016. https://doi.org/10.1007/s10915-016-0228-3"> https://doi.org/10.1007/s10915-016-0228-3

L. Cherfils, A. Miranville and S. Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 19(7):2013–2026, 2014. https://doi.org/10.3934/dcdsb.2014.19.2013"> https://doi.org/10.3934/dcdsb.2014.19.2013

A.E. Diegel, C. Wang, X. Wang and S.M. Wise. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math., 137(3):495–534, 2017. https://doi.org/10.1007/s00211-017-0887-5"> https://doi.org/10.1007/s00211-017-0887-5

A.E. Diegel, C. Wang and S.M. Wise. Stability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation. Communications in Mathematical Sciences, 14(2), 2014. Available on Internet: https://arxiv.org/pdf/1411.5248.pdf"> https://arxiv.org/pdf/1411.5248.pdf

L. Dong, C. Wang, S.M. Wise and Z. Zhang. A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. Journal of Computational Physics, 442:110451, 2021. https://doi.org/10.1016/j.jcp.2021.110451"> https://doi.org/10.1016/j.jcp.2021.110451

C.M. Elliott and A.M. Stuart. The global dynamics of discrete semilinear parabolic equations. SIAM Journal on Numerical Analysis, 30(6):1622–1663, 1993. https://doi.org/10.1137/0730084"> https://doi.org/10.1137/0730084

D.J. Eyre. Unconditionally gradient stable time marching the CahnHilliard equation. MRS Online Proceedings Library, 529:39, 1998. https://doi.org/10.1557/PROC-529-39"> https://doi.org/10.1557/PROC-529-39

H. Fakih. A Cahn–Hilliard equation with a proliferation term for biological and chemical applications. Asymptotic Analysis, 94(1-2):71–104, 2015. https://doi.org/10.3233/asy-151306"> https://doi.org/10.3233/asy-151306

V.L. Ginzburg. On the theory of superconductivity. Il Nuovo Cimento (19551965), 2:1234–1250, 1955. https://doi.org/10.1007/BF02731579"> https://doi.org/10.1007/BF02731579

J. Guo, C. Wang, S.M. Wise and X. Yue. An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Communications in Mathematical Sciences, 14(2):489–515, 2016. https://doi.org/10.4310/cms.2016.v14.n2.a8"> https://doi.org/10.4310/cms.2016.v14.n2.a8

R. Guo and Y. Xu. Efficient solvers of discontinuous Galerkin discretization for the Cahn–Hilliard equations. J. Sci. Comput., 58(2):380–408, 2013. https://doi.org/10.1007/s10915-013-9738-4"> https://doi.org/10.1007/s10915-013-9738-4

E. Hairer and G. Wanner. Multistep-multistage-multiderivative methods for ordinary differential equations. Computing, 11(3):287–303, 1973. https://doi.org/10.1007/BF02252917"> https://doi.org/10.1007/BF02252917

A. Jaust, J. Schütz and D.C. Seal. Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws. J. Sci. Comput., 69:866–891, 2016. https://doi.org/10.1007/s10915-016-0221-x"> https://doi.org/10.1007/s10915-016-0221-x

J. Kim. Phase-Field Models for Multi-Component Fluid Flows. Communications in Computational Physics, 12(3):613–661, 2012. https://doi.org/10.4208/cicp.301110.040811a"> https://doi.org/10.4208/cicp.301110.040811a

J. Kim, S. Lee, Y. Choi, S.M. Lee and D. Jeong. Basic principles and practical applications of the Cahn–Hilliard equation. Mathematical Problems in Engineering, 2016:1–11, 2016. https://doi.org/10.1155/2016/9532608"> https://doi.org/10.1155/2016/9532608

H.L. Liao, B. Ji, L. Wang and Z. Zhang. Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn–Hilliard model. J. Sci. Comput., 92(2), 2022. https://doi.org/10.1007/s10915-022-01861-4"> https://doi.org/10.1007/s10915-022-01861-4

C. Liu, F. Frank and B.M. Rivière. Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods for Partial Differential Equations, 35(4):1509–1537, 2019. https://doi.org/10.1002/num.22362"> https://doi.org/10.1002/num.22362

A. Novick-Cohen. Chapter 4 the Cahn–Hilliard equation. In Handbook of Differential Equations: Evolutionary Equations, pp. 201–228. Elsevier, 2008. https://doi.org/10.1016/s1874-5717(08)00004-2"> https://doi.org/10.1016/s1874-5717(08)00004-2

J. Schütz and D. Seal. An asymptotic preserving semi-implicit multiderivative solver. Applied Numerical Mathematics, 160:84–101, 2021. https://doi.org/10.1016/j.apnum.2020.09.004"> https://doi.org/10.1016/j.apnum.2020.09.004

J. Schütz, D.C. Seal and J. Zeifang. Parallel-in-time high-order multiderivative IMEX methods. J. Sci. Comput., 90(54), 2022. https://doi.org/10.1007/s10915-021-01733-3"> https://doi.org/10.1007/s10915-021-01733-3

J. Schütz, D.C. Seal and J. Zeifang. Parallel-in-time high-order multiderivative IMEX solvers. J. Sci. Comput., 90(54):1–33, 2022. https://doi.org/10.1016/j.apnum.2020.09.004"> https://doi.org/10.1016/j.apnum.2020.09.004

J. Schütz, D.C. Seal and A. Jaust. Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations. J. Sci. Comput., 73(2-3):1145–1163, 2017. https://doi.org/10.1007/s10915-017-0485-9"> https://doi.org/10.1007/s10915-017-0485-9

D.C. Seal, Y. Güçlü and A. Christlieb. High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput., 60:101–140, 2014. https://doi.org/10.1007/s10915-013-9787-8"> https://doi.org/10.1007/s10915-013-9787-8

J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 28(4):1669– 1691, 2010. https://doi.org/10.3934/dcds.2010.28.1669"> https://doi.org/10.3934/dcds.2010.28.1669

H. Song. Energy SSP-IMEX Runge–Kutta methods for the Cahn–Hilliard equation. Journal of Computational and Applied Mathematics, 292:576–590, 2016. https://doi.org/10.1016/j.cam.2015.07.030"> https://doi.org/10.1016/j.cam.2015.07.030

H. Song and C.W. Shu. Unconditional Energy Stability Analysis of a Second Order Implicit–Explicit Local Discontinuous Galerkin Method for the Cahn–Hilliard Equation. J. Sci. Comput., 73(2-3):1178–1203, 2017. https://doi.org/10.1007/s10915-017-0497-5"> https://doi.org/10.1007/s10915-017-0497-5

Y. Ugurlu and D. Kaya. Solutions of the Cahn–Hilliard equation. Computers & Mathematics with Applications, 56(12):3038–3045, 2008. https://doi.org/10.1016/j.camwa.2008.07.007"> https://doi.org/10.1016/j.camwa.2008.07.007

F.J. Vermolen, A. Segal and A. Gefen. A pilot study of a phenomenological model of adipogenesis in maturing adipocytes using Cahn-Hilliard theory. Med. Biol. Eng. Comput., 49(12):1447–1457, 2011. https://doi.org/10.1007/s11517-011-0802-7"> https://doi.org/10.1007/s11517-011-0802-7

L. Wang and H. Yu. Convergence Analysis of an Unconditionally Energy Stable Linear Crank-Nicolson Scheme for the Cahn-Hilliard Equation. J. Math. Study, 51(1):89–114, 2018. https://doi.org/10.4208/jms.v51n1.18.06"> https://doi.org/10.4208/jms.v51n1.18.06

L. Wang and H. Yu. On Efficient Second Order Stabilized Semi-implicit Schemes for the Cahn-Hilliard Phase-Field Equation. J. Sci. Comput., 77(2):1185–1209, 2018. https://doi.org/10.1007/s10915-018-0746-2"> https://doi.org/10.1007/s10915-018-0746-2

L. Wang and H. Yu. An energy stable linear diffusive Crank–Nicolson scheme for the Cahn–Hilliard gradient flow. Journal of Computational and Applied Mathematics, 377:112880, 2020. https://doi.org/10.1016/j.cam.2020.112880"> https://doi.org/10.1016/j.cam.2020.112880

X. Wu, G.J. van Zwieten and K.G. van der Zee. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. International Journal for Numerical Methods in Biomedical Engineering, 30(2):180–203, 2013. https://doi.org/10.1002/cnm.2597"> https://doi.org/10.1002/cnm.2597

Y. Yan, W. Chen, C. Wang and S.M. Wise. A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation. Communications in Computational Physics, 23(2), 2018. https://doi.org/10.4208/cicp.oa-2016-0197"> https://doi.org/10.4208/cicp.oa-2016-0197

J. Yang, J. Wang and J. Kim. Energy-stable method for the Cahn–Hilliard equation in arbitrary domains. International Journal of Mechanical Sciences, 228:107489, 2022. https://doi.org/10.1016/j.ijmecsci.2022.107489"> https://doi.org/10.1016/j.ijmecsci.2022.107489

J. Zeifang, A.T. Manikantan and J. Schütz. Time parallelism and Newton-adaptivity of the two-derivative deferred correction discontinuous Galerkin method. Applied Mathematics and Computation, 457:128198, 2023. https://doi.org/10.1016/j.amc.2023.128198"> https://doi.org/10.1016/j.amc.2023.128198

J. Zeifang and J. Schütz. Implicit two-derivative deferred correction time discretization for the discontinuous Galerkin method. Journal of Computational Physics, 464:111353, 2022. https://doi.org/10.1016/j.jcp.2022.111353"> https://doi.org/10.1016/j.jcp.2022.111353

J. Zeifang, J. Schütz and D. Seal. Stability of implicit multiderivative deferred correction methods. BIT Numerical Mathematics, 62:1487–1503, 2022. https://doi.org/10.1007/s10543-022-00919-x"> https://doi.org/10.1007/s10543-022-00919-x

View article in other formats

CrossMark check

CrossMark logo

Published

2024-11-22

Issue

Section

Articles

How to Cite

Theodosiou, E., Bringedal, C., & Schütz, J. (2024). A two-derivative time integrator for the Cahn-Hilliard equation. Mathematical Modelling and Analysis, 29(4), 714–730. https://doi.org/10.3846/mma.2024.20646

Share