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Abstract. This paper presents a two-derivative energy-stable method for the Cahn-
Hilliard equation. We use a fully implicit time discretization with the addition of two
stabilization terms to maintain the energy stability. As far as we know, this is the
first time an energy-stable multiderivative method has been developed for phase-field
models. We present numerical results of the novel method to support our mathemat-
ical analysis. In addition, we perform numerical experiments of two multiderivative
predictor-corrector methods of fourth and sixth-order accuracy, and we show numer-
ically that all the methods are energy stable.
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1 Introduction

In this work, we consider the numerical integration of the Cahn-Hilliard [6]
(CH) equation describing phase separation in multiphase flow, see, e.g., [2, 3,
4, 5, 8, 14, 20, 21, 24, 34, 38] and the references therein. The equations are given

■
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through

ut = ∆µ, (x, t) ∈ Ω × (0, Tend),

µ = Φ′(u)− ε2∆u, (x, t) ∈ Ω × (0, Tend),
(1.1)

for some bounded domain Ω ∈ Rd and Tend ∈ R+, subject to Neumann bound-
ary conditions on the boundary ∂Ω for both the phase field u and the potential
µ, i.e.,

∇u · n = ∇µ · n = 0, (x, t) ∈ ∂Ω × (0, Tend).

Additionally we have an initial condition u0 for u at time t = 0. In this work,
we assume that the free energy Φ(u) is a double-well potential [23], i.e.,

Φ(u) :=
1

4
(u2 − 1)2.

Note that ε is a small, yet finite positive number. The Cahn-Hilliard equation
(1.1) is inherently stiff. This is mostly due to fact that, when written in primal
form, it contains a fourth-order spatial derivative, and a nonlinear free-energy
density function. In addition, Cahn-Hilliard equation suffers from steep gradi-
ents. This in practice leads to very harsh restrictions on the time-step size ∆t
for explicit schemes, which can be as worse as ∆t = O(∆x4) [17], where ∆x is
the characteristic length of a spatial element. Hence, in this work, we focus on
implicit time integration schemes for Equation (1.1).

In particular, we focus on the class of two-derivative methods in this work,
see e.g., [1, 18, 19, 25, 28, 29]. The fundamental idea behind those methods is
to not only account for the first temporal derivative of an ordinary differential
equation (ODE) – which is the flux – but also of the second temporal derivative.
To put the ideas more into context, assume that an ODE is given by

u′(t) = Q(u(t)),

where Q : Rm → Rm is a smooth flux function; and here in this context could
denote a spatial discretization of (1.1). It is straightforward to show that

u′′(t) = Q′(u)Q(u) =: Q(2)(u),

(to avoid a clumsy notation, we refrain from writing the t-dependency explicitly
each time). If the function Q(2) is included in a time-marching scheme, one
obtains a two-derivative scheme. A classical example that we treat in this work
is the implicit second-order Taylor scheme

un+1 = un +∆tQ(un+1)− ∆t2

2
Q(2)(un+1). (1.2)

Two-derivative schemes are not restricted to second-order schemes. By adding
stages or steps one can obtain orders of accuracy larger than two, like the two-
derivative predictor-corrector methods of fourth and sixth-order accuracy that
we use for the numerical results [26].

Math. Model. Anal., 29(4):714–730, 2024.
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For the CH equation (1.1), the total free energy

E(u) :=

∫
Ω

(
ε2

2
∥∇u∥2 + Φ(u)

)
dx (1.3)

is dissipated, i.e., E(u(t)) is a monotonically decreasing function in time t for
the exact solution u to Equation (1.1) [15]. This property of the Cahn-Hilliard
equation is of utmost importance; it is hence desirable that a numerical inte-
gration scheme mimics this behavior. Schemes preserving numerical variants
of this energy (energy-stable schemes) have been presented in literature, begin-
ning with the seminal work of Eyre [13], with origins that can be traced back to
Elliott and Stuart [12]. For other works on energy stability of the Cahn-Hilliard
equation, we refer to [7, 9, 10,11,16,22,30,31,32,35,36,37,38,39,40].

Developing energy-stable schemes is far from being trivial, in particular for
high-order schemes. To our knowledge, in this work, we are the first to show en-
ergy stability for a temporal discretization of the Cahn-Hilliard equation using a
multiderivative approach. More precisely, we show that the semi-discretization
of Equation (1.1) using the second order Taylor method (1.2), equipped with
suitable stability terms inspired by the work of [38], is energy stable for well-
chosen parameters. Numerical results demonstrate this behavior, but also show
that even without stabilization, the scheme remains energy stable.

Following, we also show higher-order (higher than two) results using the
Hermite-Birkhoff predictor-corrector methods that were first developed in [25]
and [26]. These methods have shown to be efficient for unsteady PDEs, see
[41, 42] and have shown good stability properties [43]. High-order accuracy
comes from the correction steps in these methods. We demonstrate that this
yields very rapidly converging solutions. Additionally, these schemes are all
found to be energy stable in the numerical results.

The paper is organized as follows. In Section 2, we present the stabilized
two-derivative implicit Taylor method and we prove the energy stability of the
novel method. We also present the numerical findings of the Cahn-Hilliard
equation using the novel two-derivative method. We present results concerning
the convergence order and the energy stability of the method and how the
choice of the stabilization terms influence the method. In Section 3, we present
the Hermite-Birkhoff predictor-corrector methods and we present the numerical
findings concerning the convergence and the energy stability of the methods.
Finally, in Section 4, we present a conclusion and an outlook for this paper.

2 Two-derivative energy stable method

In this section, we consider the semi-discretization in time of Equation (1.1)
through the second-order Taylor scheme (1.2). A straightforward computation
of the second-order temporal derivatives results in the method

un+1 = un +∆tun+1
t − ∆t2

2
un+1
tt , (2.1)
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with the auxiliary quantities defined as

un+1
t = ∆µn+1, µn+1 = Φ′(un+1) −ε2∆un+1,

un+1
tt = ∆µn+1

t , µn+1
t = Φ′′(un+1)un+1

t −ε2∆un+1
t .

As usual, we assume that tn := n∆t for n ∈ N, and un denotes an approx-
imation to u(tn+1). In order to show the stability of this scheme, inspired
by [38] we introduce stability terms into the update of u, Equation (2.1), and
the definition of µ. The scheme then reads:

Definition 1 [Stabilized second-order Taylor for CH]. The semi-discrete-in-
time stabilized second order Taylor method for Equation (1.1) is given by

un+1 = un +∆tun+1
t − ∆t2

2
un+1
tt − ∆t3

2
a1∆

2µn+1, (2.2)

with the auxiliary stabilized quantities defined as

un+1
t = ∆µn+1, µn+1 = Φ′(un+1) −ε2∆un+1 + a2∆t(un+1 − un),

un+1
tt = ∆µn+1

t , µn+1
t = Φ′′(un+1)un+1

t −ε2∆un+1
t .

Here, a1 and a2 denote positive stabilization parameters. Restrictions on the
parameters will be obtained from Theorem 1.

Remark 1. Given that a1 and a2 are constant values, the scheme presented in
Def. 1 is still second order in time, so in this sense, our modifications pre-
serve the order of the Taylor scheme. This can be seen from the fact that the
stabilization terms enter to O(∆t3), as there holds

∆t3

2
a1∆

2µn+1 = a1∆t3O(1) = O(∆t3),

a2∆t(un+1 − un) = O(∆t)O(∆t) = O(∆t2).

The latter term occurs in the definition of µ and is in the final update step
hence multiplied with an extra ∆t.

In the following Subsection 2.1, we prove the energy stability of the stabilized
two-derivative implicit Taylor scheme. Afterwards in Subsection 2.2, we inves-
tigate the novel method numerically.

2.1 Energy stability

In this section we will prove that the method described in Definition 1 is energy
stable under restrictions on the stabilization parameters a1 and a2.

Theorem 1. If the stabilization parameters a1, a2 are such that

a1∆t ≥ 1, a2∆t ≥ 1

2
, (2.3)

then the time-stepping scheme from Definition 1 is energy stable in the sense
that E(un+1) ≤ E(un).

Math. Model. Anal., 29(4):714–730, 2024.
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Proof. Consider the discretization given in Definition 1, where un+1
t and µn+1

t

are replaced by their respective definitions. This yields

un+1 − un = ∆t∆µn+1 − ∆t2

2

(
∆
(
Φ′′ (un+1

)
∆µn+1

)
− ε2∆3µn+1

)
− ∆t3

2
a1∆

2µn+1.

Let us define the L2 inner product in a standard way as (f, g) :=
∫
Ω
fgdx. We

test the equations for un+1 and µn+1 by generic functions q and v to obtain(
un+1 − un, q

)
= ∆t

(
∆µn+1, q

)
− ∆t2

2

(
∆
(
Φ′′ (un+1

)
∆µn+1

)
, q
)

+
∆t2

2
ε2

(
∆3µn+1, q

)
−
(
∆t3

2
a1∆

2µn+1, q

)
,(

µn+1, v
)
=

(
Φ′ (un+1

)
, v
)
− ε2

(
∆un+1, v

)
+ a2∆t(un+1 − un, v).

Upon integration by parts, we obtain(
un+1 − un, q

)
= −∆t

(
∇µn+1,∇q

)
− ∆t2

2

(
Φ′′ (un+1

)
∆µn+1, ∆q

)
− ∆t2

2
ε2

(
∇∆µn+1,∇∆q

)
−

(
∆t3

2
a1∆µn+1, ∆q

)
,(

µn+1, v
)
=

(
Φ′ (un+1

)
, v
)
+ ε2

(
∇un+1,∇v

)
+ a2∆t(un+1 − un, v).

Now, take the specific test functions q := µn+1 and v := un+1 − un, and insert
them into the equation above to get(

un+1 − un, µn+1
)
=−∆t∥∇µn+1∥2 − ∆t2

2

((
Φ′′ (un+1

))
∆µn+1, ∆µn+1

)
− ∆t2

2
ε2

∥∥∇∆µn+1
∥∥2 − ∆t3

2
a1∥∆µn+1∥2 (2.4)

and(
µn+1, un+1 − un

)
=
(
Φ′ (un+1

)
, un+1 − un

)
+ ε2

(
∇un+1,∇un+1 −∇un

)
+ a2∆t

∥∥un+1 − un
∥∥2 . (2.5)

Upon subtracting Equation (2.5) from Equation (2.4) we obtain

0 =−∆t
∥∥∇µn+1

∥∥2 − ∆t2

2

(
Φ′′ (un+1

)
∆µn+1, ∆µn+1

)
− ∆t2

2
ε2

∥∥∇∆µn+1
∥∥2

− ∆t3

2
a1∥∆µn+1∥2 −

(
Φ′ (un+1

)
, un+1 − un

)
− ε2

(
∇un+1,∇un+1 −∇un

)
− a2∆t

∥∥un+1 − un
∥∥2 .

We use the identity

(a, a− b) =
1

2
[a2 − b2 + (a− b)2]
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for the penultimate term
(
∇un+1,∇un+1 −∇un

)
and the Taylor expansion

Φ(un) = Φ(un+1)− Φ′(un+1)(un+1 − un) +
Φ′′(ξ)
2

∥un+1 − un∥2

with some ξ ∈ (un, un+1) for the term
(
Φ′ (un+1

)
, un+1 − un

)
. This yields

0 =−∆t
∥∥∇µn+1

∥∥2 − ∆t2

2

(
Φ′′ (un+1

)
∆µn+1, ∆µn+1

)
− ∆t2

2
ε2

∥∥∇∆µn+1
∥∥2

− ∆t3

2
a1∥∆µn+1∥2 +

∫
Ω

Φ (un) dx−
∫
Ω

Φ
(
un+1

)
dx− Φ′′ (ξ)

2

∥∥un+1 − un
∥∥2

− ε2

2

(∥∥∇un+1
∥∥2 − ∥∇un∥2 +

∥∥∇un+1 −∇un
∥∥2)− a2∆t

∥∥un+1 − un
∥∥2 .

Gathering the energy terms, see (1.3), this can be further simplified to yield

0 =−∆t
∥∥∇µn+1

∥∥2 − ∆t2

2

(
Φ′′ (un+1

)
∆µn+1, ∆µn+1

)
− ∆t2

2
ε2

∥∥∇∆µn+1
∥∥2 − ∆t3

2
a1∥∆µn+1∥2 + E (un)− E

(
un+1

)
− Φ′′ (ξ)

2

∥∥un+1 − un
∥∥2 − ε2

2

∥∥∇un+1 −∇un
∥∥2 − a2∆t

∥∥un+1 − un
∥∥2 ,

which means that

E(un+1)− E (un) = −∆t
∥∥∇µn+1

∥∥2 − ∆t2

2

(
Φ′′ (un+1

)
∆µn+1, ∆µn+1

)
− ∆t3

2
a1∥∆µn+1∥2 − ∆t2

2
ε2

∥∥∇∆µn+1
∥∥2 − Φ′′ (ξ)

2

∥∥un+1 − un
∥∥2

− ε2

2

∥∥∇un+1 −∇un
∥∥2 − a2∆t

∥∥un+1 − un
∥∥2 .

Dropping the negative terms, one obtains

E(un+1)− E (un) ≤− ∆t2

2

(
Φ′′ (u)∆µn+1, ∆µn+1

)
− Φ′′ (ξ)

2

∥∥un+1 − un
∥∥2

− ∆t3

2
a1∥∆µn+1∥2 − a2∆t

∥∥un+1 − un
∥∥2 . (2.6)

For the double-well potential, there holds Φ′′ (u) = 3u2 − 1, and hence

Φ′′(u) ≥ −1.

Therefore, Equation (2.6) can be written as

E
(
un+1

)
− E (un) ≤ ∆t2

2
∥∆µn+1∥2 + 1

2

∥∥un+1 − un
∥∥2

− ∆t3

2
a1

∥∥∆µn+1
∥∥2 − a2∆t

∥∥un+1 − un
∥∥2 .

Math. Model. Anal., 29(4):714–730, 2024.
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The right-hand side is negative if there holds

1− a1∆t ≤ 0,
1

2
− a2∆t ≤ 0,

which indeed yields the restrictions (2.3) as stated in the theorem. ⊓⊔

Remark 2. Let us mention that the result shown here is somehow suboptimal.
First of all, we are not able to obtain unconditional stability in ∆t. There is
the somewhat counterintuitive restriction that, as smaller ∆t gets, the more
stabilization one needs to add. We will point out in our numerical results
that we cannot observe such a behavior numerically. Second, one might be
tempted to choose the stability coefficients as O(∆t−1). However, then one
would loose an order of accuracy. To fulfill the conditions of Theorem 1 and at
the same time keep the second-order accuracy of the scheme, one can keep a1
and a2 fixed, but only consider ∆t large enough to fulfill the constraints (2.3).
However, in practice, a1 and a2 are chosen and kept constant over the whole
range of ∆t considered, even if the restrictions from Theorem 1 are violated.
Numerically, it will be seen that this is a reasonable choice.

2.2 Numerical findings

In this section, we present numerical findings on the stabilized method, in-
cluding a study on the influence of the stability parameters a1 and a2. The
one-dimensional version of Equation (1.1) is used. The algorithm from Defi-
nition 1 is implemented in its primal form, meaning that the definitions of µ
and µt are inserted into u and ut, respectively. Hence, we use the following
straightforward three and five-point central finite difference discretizations for
the second and the fourth-order spatial derivative, respectively:

∂2
xui ≈

ui−1 − 2ui + ui+1

∆x2
,

∂4
xui ≈

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

∆x4
.

In all cases, ∆x denotes the spatial step size; ui denotes u at spatial position
xi := i∆x. At the boundaries, the finite difference is changed to incorporate the
homogeneous Neumann conditions on u and µ.1 With this choice of spatial dis-
cretization and boundary conditions, the scheme is globally mass conservative
in the sense that

∫
Ω
udx is constant in time.

For Cahn-Hilliard, there are hardly any exact solutions (for some attempts,
consider [33]). In this work, we are interested in temporal integration, which
is why we use Matlab’s ode15s solver at a very fine error tolerance of 10−16

to integrate the semi-discrete (in space) Cahn-Hilliard equations; thereby ob-
taining a reference solution. It is important to note that we do not include
stabilization terms into this computation. As error measure, we then use the
quantity

e := ∥uN − u(Tend)∥2,
1 Please note that in one dimension, it is easy to see that when ∂xµ = 0 this leads to
∂3
xu = 0 due to the definition of µ.
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where N := Tend

∆t , uN is the approximate solution at time tN ≡ Tend, and u is
the ”exact” reference solution.

For simplicity, we consider the 1D Cahn-Hilliard equation on the domain
Ω = [−5, 5] with different values for the thickness interface ε =

√
0.1 and

ε = 0.1.

−6 −4 −2 0 2 4 6
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1
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−6 −4 −2 0 2 4 6
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0

0.5

1

x

t = 1

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

x

t = 5

Figure 1. The reference solution of 1D Cahn-Hilliard equation for different times t = 0,
t = 1, and t = 5, with interface thickness ε =

√
0.1 in spatial domain Ω = [−5, 5]. Initial

condition is given by Equation (2.7).

Figure 1 shows the evolution of the Cahn-Hilliard equation for an interface
thickness of ε =

√
0.1 and initial condition

u(x, 0) = cos
(πx

5

)
. (2.7)

The time frames are at three time instances t = 0, t = 1 and t = 5, respectively.
The reference solution on a spatial grid with 155 elements using the Matlab
”ode15s” routine is shown. The typical ’phase-separation’ is observed in the
solution.
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Figure 2. The reference solution of 1D Cahn-Hilliard equation for different times t = 0,
t = 1, and t = 10, with interface thickness ε = 0.1 in spatial domain Ω = [−5, 5]. Initial

condition is given by Equation (2.7).

Figure 2 shows the evolution of the reference solution of the Cahn-Hilliard
equation for a sharper interface thickness of ε = 0.1 and same initial conditions
and spatial grid as before. The time frames are at three time instances t = 0,
t = 1 and t = 10, respectively. We see that the interface is sharper than before,
as expected, and it needs more time to separate the phases.

Math. Model. Anal., 29(4):714–730, 2024.
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Smaller values of ε would require finer spatial grid and finer time-step size
to be stable. This is however common for the Cahn-Hilliard equation. The
spatial mesh is formed of N = 155 elements to ensure that the error from the
spatial discretization will not dominate. For the numerical results, the final
time is Tend = 1.0 for ε =

√
0.1, and ε = 0.1. For the convergence plots we

double the number of timesteps in every refinement. The convergence rates
are shown on a logarithmic scale. It is worth noting that we focus on the
convergence and the accuracy in time and not in space. Therefore, only the
time-step size is refined. For the nonlinear solver, we use Newton’s method
with relative and absolute tolerance at 10−12. The stabilization terms a1 and
a2 are chosen according to Theorem 1. We use ∆t at the finest refinement of
the convergence plots to choose appropriate values for the coefficients a1 and
a2.
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Figure 3. Convergence plots of the implicit two-derivative Taylor method using different
stabilization terms with parameters Tend = 1.0, ε =

√
0.1 (left) and ε = 0.1 (right) in space

domain Ω = [−5, 5].

In Figure 3, convergence plots for both ε =
√
0.1 and ε = 0.1 are shown

for the unstabilized and the stabilized (with different stabilization parameters)
two-derivative implicit Taylor method. We observe that the scheme for every
choice of the stabilization terms a1 and a2 achieves the expected second-order.
In addition, it can be observed that the errors are higher when the stabiliza-
tion parameters are larger. This is something that, at least as as long as the
computations remain stable, was to be expected. The larger a1 and a2, the
more ’inconsistencies’ are introduced in Equation (2.2), hence the worse the
accuracy is.

To confirm the results of Theorem 1, the energy is plotted in Figure 4.
It can be clearly seen that there is energy dissipation for both choices of ε
and all choices of the stabilization parameters – but also for the unstabilized
variant. For the larger ε, differences are negligible, while for the smaller ε,
one can clearly see some minor differences. To conclude, we can confirm the
results from Theorem 1. However, we also see that the stabilization terms are
not really necessary, which we have confirmed for other initial conditions, not
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Figure 4. Energy for the two-derivative implicit Taylor method with different choices of
stabilization terms and parameters ε =

√
0.1 (left) and ε = 0.1 (right) in spatial domain

Ω = [−5, 5].

shown here, as well. Hence, in the next section, we will apply higher-order
two-derivative methods to the problem at hand without stabilization.

3 Higher-order time integration

The Hermite-Birkhoff predictor-corrector method (HBPC for short) has been
introduced in [25] and extended in [27], originally for applications that required
implicit/explicit splittings. The method has been discussed in detail in [27], so
we will only shortly review it here. The method computes an initial aproxima-
tion un,[0] to the exact solution at time tn+1, and then subsequently corrects it
to obtain higher-order approximations un,[k]. We have chosen this method as
its intermediate steps closely resemble the second-order Taylor method.

The method needs a background two-derivative Runge-Kutta scheme, rep-
resented through its Butcher tableaux for the first- and second-order derivative,

respectively, A
(1)
lj and A

(2)
lj , for 1 ≤ l ≤ s, where s denotes the number of stages.

In this work, we use the fourth- and sixth-order schemes presented in [27, (2)
and (3)], respectively.

Given that Q(u) is an approximation to the primal Cahn-Hilliard operator
Φ′(un+1)xx − εun+1

xxxx as discussed in Section 2.2, the HBPC algorithm can be
formulated as follows:

Algorithm 1 (HBPC(q, kmax)) In a first step, stage values are predicted
using a second-order Taylor scheme; subsequently, these values are corrected
towards the background Runge-Kutta scheme.

1. Predict. Solve the following expression for un,[0],l and for each stage
1 ≤ l ≤ s:

un,[0],l := un + cl∆tQn,[0],l − (cl∆t)2

2
Q̇n,[0],l.

Math. Model. Anal., 29(4):714–730, 2024.



724 E. Theodosiou, C. Bringedal and J. Schütz

2. Correct. The following expression is solved for un,[k+1],l for each 1 ≤
l ≤ s and 0 ≤ k ≤ kmax − 1:

un,[k+1],l :=un +∆t
(
Qn,[k+1],l −Qn,[k],l

)
− ∆t2

2

(
Q̇n,[k+1],l − Q̇n,[k],l

)
+ Il(Qn,[k],0, . . . , Qn,[k],s).

3. Update.

un+1 := un,[kmax],s,

where Il is the underlying Runge-Kutta quadrature rule which is only computed
explicitly, and the approximation of the solution is denoted as un,[k],l ≈ u(tn +
cl∆t). Also, for simplicity in notation we omit the u of the symbolism Q(u)
in prediction and correction step. For example, instead of Q(un,[0],l) we use
the notation Qn,[0],l. For the numerical results we use two types of the method
HBPC(q, kmax), one with q = 4 and two stages and one with q = 6 and three
stages; see again [27, (2) and (3)].

3.1 Numerical findings

In this section, we investigate the accuracy and energy stability of the HBPC
(q, kmax) methods mentioned before in Algorithm 1 numerically. We keep the
same parameters of the example problem as in Section 2.2. The spatial mesh
is formed of N = 155 elements with the same initial condition (2.7) and using
the same spatial discretization method. For the numerical results, the final
time of the simulation for ε =

√
0.1 is Tend = 3.0. In order to see the relatively

high order of the schemes HBPC(q, kmax), we have extended the final time to
Tend = 3 for this simulation. For ε = 0.1 the final time remained Tend = 1.0.
We refine only the time-step size and not the spatial grid as before. For the
nonlinear solver, we use Newton’s method with relative and absolute tolerance
of 10−12.

It is important to note that for all the numerical results we obtain in this
section, the stabilization coefficients a1 and a2 are set to zero. This is because
we have observed in Section 2.2 that the energy stability is maintained even if
we violate the conditions of Theorem 1. For the HBPC methods we use the
necessary number of the correction steps to achieve the proper order. Hence, for
the method HBPC(4,2) we use kmax = 2 and for HBPC(6,4) we use kmax = 4
which are the minimum correction steps to obtain the expected order of the
HBPC methods.

In Figure 5 on the left we see convergence for all three methods for interface
thickness ε =

√
0.1. On the right the convergence rates are shown for ε = 0.1.

We can see that the orders of accuracy are met in both cases. In the left plot
for the HBPC methods we observe that the errors stay around the Newton
tolerance.

In Figure 6, we can see the convergence plots for the two Hermite-Birkhoff
predictor-corrector methods HBPC(4,kmax) on the left and HBPC(6,kmax) on
the right, with interface thickness set to ε =

√
0.1 and for different values of
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Figure 5. Convergence plots for all methods without stabilization terms and parameters
Tend = 3.0, ε =

√
0.1 (left) and Tend = 1.0, ε = 0.1 (right) in space domain Ω = [−5, 5].
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Figure 6. Convergence plots for the methods HBPC(4,kmax) (left) and HBPC(6,kmax)
(right) without stabilization terms and parameters Tend = 3.0, ε =

√
0.1 and different

amount of correction steps in space domain Ω = [−5, 5].

correction steps. We can see the influence of kmax values on the error. First,
when kmax = 0, we observe a second-order accuracy because the predictor
is a two-derivative implicit scheme. After two correction steps, we observe a
fourth order of accuracy, the maximum for the HBPC(4,kmax) method. After
four correction steps, the HBPC(6,kmax) can achieve the maximum sixth-order
convergence. In the left plot, we can see that for kmax = 4, 6, 8, the error does
not decrease any more. On the other hand, with the method HBPC(6,kmax),
we can see that the error keeps decreasing very close to the Newton tolerance
without any time refinement for all number of correction steps.

In Figure 7, we see the convergence plots for the two Hermite-Birkhoff
predictor-corrector methods HBPC(4,kmax) on the left and HBPC(6,kmax) on
the right, with smaller interface thickness ε = 0.1 and for different values of
correction steps. We observe similar behavior as in the case that ε =

√
0.1.

Therefore, the increased stiffness does not affect the behavior of the method.
The reason for the fact that the error stops decreasing around 10−10 to 10−12
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Figure 8. Energy for all three methods without stabilization terms and ε =
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and ε = 0.1 (right) in space domain Ω = [−5, 5]. Note that the three lines stand on top of
each other.

in Figures 5, 6 and 7 is attributed to the finite Newton tolerance of 10−12.
Finally, we present numerical findings regarding the energy stability. In

all the cases that we present here, there is energy dissipation, see Figure 8,
although there are no stabilization terms. We can see that the results are very
similar compared to Figure 4 where energy for stabilized two-derivative Taylor
method is shown. There is not a strong influence of the time discretization
methods or the absence of the stabilization terms in the energy. We notice that
all methods exhibit energy dissipation even when we violate the conditions of
Theorem 1.

4 Conclusions and outlook

We have presented a novel second-order implicit Taylor method that maintains
the energy stability of the Cahn-Hilliard equation. We showed numerically
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that the second-order Taylor method is energy stable even without stabiliza-
tion terms. The second-order convergence was achieved in any case. We showed
that the choice of different stabilization parameters did not influence the or-
der of the method, but had an influence on the size of the error. We ob-
served that the error was larger when we chose larger values of stabilization
parameters. In addition, we performed numerical experiments with two more
two-derivative methods, a fourth and a sixth-order Hermite-Birkhoff predictor-
corrector method. We observed that the expected orders were achieved in all
cases, and the energy stability was maintained. Regarding the energy stability
we observed energy dissipation in all cases, even in the cases that the bounds
of the stabilization parameters were violated. In addition we noticed that the
energy was influenced by the interface thickness ε and by the size of the stabi-
lization parameters, but not by the choice of the time discretization method.

Future work focuses on extending the methodology shown here to methods
with more than two derivatives. This will pose extra challenges, as each ad-
ditional temporal derivative influence the stiffness of the problem negatively.
Furthermore, the ultimate goal is a parameter-free energy-stable scheme of
uniform high order. In this sense, the current work represents an important
step.
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[25] J. Schütz and D. Seal. An asymptotic preserving semi-implicit mul-
tiderivative solver. Applied Numerical Mathematics, 160:84–101, 2021.
https://doi.org/10.1016/j.apnum.2020.09.004.
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