On joint discrete universality of the Riemann zeta-function in short intervals

    Kalyan Chakraborty Affiliation
    ; Shigeru Kanemitsu   Affiliation
    ; Antanas Laurinčikas   Affiliation


In the paper, we prove that the set of discrete shifts of the Riemann zeta-function approximating analytic nonvanishing functions f1(s),...,fr(s) defined on  has a positive density in the interval [N,N + M] with with real algebraic numbers a1,...,ar linearly independent over Q. A similar result is obtained for shifts of certain absolutely convergent Dirichlet series.

Keyword : Riemann zeta-function, universality, weak convergence

How to Cite
Chakraborty, K., Kanemitsu, S., & Laurinčikas, A. (2023). On joint discrete universality of the Riemann zeta-function in short intervals. Mathematical Modelling and Analysis, 28(4), 596–610.
Published in Issue
Oct 20, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


A. Baker. The theory of linear forms in logarithms. In Transcendence Theory: Advances and Applications, pp. 1–27, Boston, 1977. Academic Press.

A. Balčiūnas, V. Garbaliauskienė, V. Lukšienė, R. Macaitienė and A. Rimkevičienė. Joint discrete approximation of analytic functions by Hurwitz zeta-functions. Math. Model. Anal., 27(1):88–100, 2022.

P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

A. Ivič. The Riemann Zeta-Function. Theory and Applications. Dover Publications, Mineola, New York, 2012.

M. Jasas, A. Laurinčikas, M. Stoncelis and D. Šiaučiūnas. Discrete universality of absolutely convergent Dirichlet series. Math. Model. Anal., 27(1):78–87, 2022.

A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, 1996.

A. Laurinčikas. Universality of the Riemann zeta-function in short intervals. J. Number Theory, 204:279–295, 2019.

A. Laurinčikas. Discrete universality of the Riemann zeta-function in short intervals. Appl. Anal. Discrete Math., 14(2):382–405, 2020.

A. Laurinčikas. On joint universality of the Riemann zeta-function. Math. Notes, 110(1-2):210–220, 2021.

A. Laurinčikas. Joint universality in short intervals with generalized shifts for the Riemann zeta-function. Mathematics, 10(10):art. no. 1652, 2022.

K. Matsumoto. A survey on the theory of universality for zeta and L-functions. In M. Kaneko, S. Kanemitsu and J. Liu(Eds.), Number Theory: Plowing and Starring Through High Wawe Forms, Proc. 7th China-Japan Semin. (Fukuoka 2013), volume 11 of Number Theory and Appl., pp. 95–144, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2015. World Scientific Publishing Co.

S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp. Mat. Nauk., 7(2):31–122, 1952 (in Russian).

H.L. Montgomery. Topics in Multiplicative Number Theory. Lecture Notes Math. Vol. 227, Springer-Verlag, Berlin, 1971.

T. Nakamura. The joint universality and the generalized strong recurrence for Dirichlet L-functions. Acta Arith., 138(4):357–362, 2009.

L . Pańkowski. Joint universality for dependent L-functions. Ramanujan J., 45:181–195, 2018.

A. Reich. Werteverteilung von Zetafunktionen. Arch. Math., 45:440–451, 1980.

J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007.

S.M. Voronin. Theorem on the “universality” of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem., 39:475–486, 1975 (in Russian).