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Abstract. In the paper, we prove that the set of discrete shifts of the Riemann
zeta-function (ζ(s + 2πia1k), . . . , ζ(s + 2πiark)), k ∈ N, approximating analytic non-
vanishing functions f1(s), . . . , fr(s) defined on {s ∈ C : 1/2 < Res < 1} has a positive
density in the interval [N,N + M ] with M = o(N), N → ∞, with real algebraic
numbers a1, . . . , ar linearly independent over Q. A similar result is obtained for shifts
of certain absolutely convergent Dirichlet series.
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1 Introduction

Let, as usual, R, Q, Z, N0, N, P and C denote the sets of all real, rational,
integer, non-negative integer, positive integer, prime and complex numbers,
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respectively, and s = σ + it, σ, t ∈ R, be a complex variable. The Riemann
zeta-function ζ(s) is defined, for σ > 1, by

ζ(s) =

∞∑
m=1

1

ms
=
∏
p∈P

(
1− 1

ps

)−1

,

and has the analytic continuation to the whole complex plane, except for a
simple pole at the point s = 1 with residue 1. The function ζ(s) was already
known to Euler, and its importance was demonstrated by Riemann in 1859,
however, till our days remains one of the most interesting and keeping many
problems analytic object. In 1975, Voronin proved [18] that ζ(s) has a very
good approximation property called universality. This means that a wide class
of analytic functions is approximated by shifts ζ(s+ iτ), τ ∈ R. More precisely,
Voronin obtained that if 0 < r < 1/4, and the function f(s) is continuous and
non-vanishing in the disc |s| ⩽ r, and analytic in the interior of that disc, then,
for every ε > 0, there exists τ = τ(ε) ∈ R such that

max
|s|⩽r

|ζ (s+ 3/4 + iτ)− f(s)| < ε.

The Voronin theorem by various authors was improved and extended, see the
monograph [17] and the informative paper [11]. Let D = {s ∈ C : 1/2 < σ <
1}. Denote by K the class of compact subsets of the strip D with connected
complements, and by H0(K), K ∈ K, the class of continuous non-vanishing
functions on K that are analytic in the interior of K. Then a modern form
of the Voronin theorem is the following, see, for example, [6, 17]: suppose that
K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Here measA denotes the Lebesgue measure of a measurable set A ⊂ R. The
above inequality shows that there exist infinitely many shifts approximating a
given function f(s) ∈ H0(K).

Joint approximation of analytic functions by shifts of the function ζ(s)
was considered in [14]. Let a1 = 1, a2, . . . , ar be algebraic numbers linearly
independent over Q, and, for j = 1, . . . , r, Kj ∈ K and fj(s) ∈ H0(Kj). Then,
for every real a ̸= 0 and ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s+ iajaτ)− fj(s)| < ε
}
> 0.

The above approximation theorems are of continuous type because τ in
approximating shifts can take arbitrary real values. Reich in [16] proposed a
discrete version of approximation theorems when τ takes values from a certain
discrete set, for example, an arithmetic progression. Denote by #A the cardi-
nality of the set A, and suppose that N runs over the set N0. Then a special
case of Reich’s theorem says that if K ∈ K, f(s) ∈ H0(K), then, for every real
h ̸= 0 and ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε

}
> 0.
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The joint discrete approximation by generalized shifts ζ(s+iφj(k)) with φj(k) =
kαj (log k)βj for some reals αj and βj was considered in [15]. The discrete uni-
versality for more general zeta-functions was studied, for example, in [2] and [5].

All above mentioned universality theorems are not effective in the sense that
any concrete approximating shifts are not known. Since, for their proofs, the
measure theory is applied, founding of concrete shifts is not possible. Therefore,
effectivization of universality theorems is reduced to indication of intervals
containing approximating values of τ or k. This leads to the type of universality
theorems in short intervals. The first result in this direction was obtained in [7].
Suppose that T 1/3(log T )26/15 ⩽ H ⩽ T , K ∈ K and f(s) ∈ H0(K). Then, for
every ε > 0,

lim inf
T→∞

1

H
meas

{
τ ∈ [T, T +H] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Thus, there exists the interval [T, T +H] of length H = o(T ), T → ∞, contain-
ing infinitely many values τ such that ζ(s+ iτ) approximate the function f(s).
The joint version of [7] was obtained in [9] and [10], and the discrete version
in [8].

The aim of this paper is to prove a joint discrete universality theorem for
the Riemann zeta-function in short intervals. For statements of results, we
need some definitions and notations. Denote by H(D) the space of analytic
functions onD endoved with the topology of uniform convergence on compacta.
Let B(X) be the Borel σ-field of the space X, and γ = {s ∈ C : |s| = 1}.

Define the set Ω =
∏

p∈P γp, where γp = γ for all p ∈ P. With the product
topology and pointwise multiplication, the torus Ω is a compact topological
Abelian group.

Let Ωr = Ω1 × · · · × Ωr, where Ωj = Ω for j = 1, . . . , r. Then again
Ωr is a topological Abelian group. Therefore, on (Ωr,B(Ωr)), the proba-
bility Haar measure mH can be defined, and we have the probability space
(Ωr,B(Ωr),mH). Denote by ωj(p) the pth component of an element ωj ∈ Ω,
j = 1, . . . , r, p ∈ P, and by ω = (ω1, . . . , ωr) the elements of Ωr, and on the
probability space (Ωr,B(Ωr),mH), define theHr(D),Hr(D)=H(D)×· · ·×H(D)︸ ︷︷ ︸

r

,

-valued random element ζ(s, ω) = (ζ(s, ω1), . . . , ζ(s, ωr)), where

ζ(s, ωj) =
∏
p∈P

(1− ωj(p)/p
s)

−1
, j = 1, . . . , r.

For real numbers a1, . . . , ar, let â = max1⩽j⩽r |aj | and ̂̂a = max1⩽j⩽r |aj |−1.

Theorem 1. Suppose that a1, . . . , ar are real algebraic numbers linearly inde-

pendent over Q and ̂̂a(âN)1/3(log âN)26/15 ⩽ M ⩽ N − 3. For j = 1, . . . , r, let
Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
N→∞

1

M + 1

{
N ⩽ k ⩽ N +M : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s+ 2πiajk)− fj(s)| < ε
}

⩾ mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε
}
> 0.
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Moreover, the limit

lim
N→∞

1

M + 1

{
N ⩽ k ⩽ N +M : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s+ 2πiajk)− fj(s)| < ε
}

= mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε
}
> 0

exists for all but at most countably many ε > 0.

It turns out that a certain function generated by ζ(s) also has the same
approximation properties as ζ(s) but is given by absolutely convergent series.
Let θ > 1/2 be a fixed number, and vu(m) = exp{−(m/u)θ} for u > 0 and
m ∈ N. Define

ζu(s) =

∞∑
m=1

vu(m)

ms
.

Since vu(m) decreases exponentially with respect to m, the latter series con-
verges absolutely for σ > σ0 with every finite σ0. For u → ∞, vu(m) tends to 1,
however, is not possible to take u → ∞ in the definition of ζu(s). Nevertheless,
it turns out that ζu(s) is close to ζ(s) in the mean, and this is sufficient for the
proof of the following statement.

Theorem 2. Suppose that a1, . . . , ar are real algebraic numbers linearly inde-

pendent over Q, uN → ∞ and uN ≪ exp{o(N)}, and ̂̂a(âN)1/3(log âN)26/15 ⩽
M ⩽ N − 3. For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then the limit

lim
N→∞

1

M + 1

{
N ⩽ k ⩽ N +M : sup

1⩽j⩽r
sup
s∈Kj

|ζuN
(s+ 2πiajk)− fj(s)| < ε

}
= mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε
}

exists and is positive for all but at most countably many ε > 0.

Note that the power 1/3 in Theorems 1 and 2 is not final, and depends on
mean square estimates in short intervals.

For the proof of Theorems 1 and 2, we will apply arguments of weak con-
vergence of probability measures.

2 Mean square estimates

Mean square estimates play an important role in the proofs of universality for
zeta-functions, and this role is crucial in the case of short intervals. Recall that
the notation a ≪θ b, b > 0, means that there exists a constant C(θ) > 0 such
that |a| ⩽ C(θ)b.

Lemma 1. Suppose that 1/2 < σ ⩽ 13/22 is fixed, and T 1/3(log T )26/15 ⩽
H ⩽ T . Then uniformly in H∫ T+H

T−H

|ζ(σ + it)|2 dt ≪σ H.
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Proof. The lemma is a special case of Theorem 7.1 from [4] for the exponential
pair (4/11, 6/11). ⊓⊔

Lemma 2. Suppose that 1/2 < σ ⩽ 13/22 is fixed, and a ∈ R \ {0}. Then
uniformly in H, |a|−1(|a|T )1/3(log |a|T )26/15 ⩽ H ⩽ T ,∫ T+H

T

|ζ(σ + iat+ iτ)|2 dt ≪σ,a H (1 + |τ |) .

Proof. Lemma 1 implies that uniformly in H, |a|−1(|a|T )1/3(log |a|T )26/15 ⩽
H ⩽ T ,∫ T+H

T−H

|ζ(σ + iat)|2 dt =
∫ T+H

T−H

|ζ(σ + i|a|t)|2 dt

=
1

|a|

∫ |a|(T+H)

|a|(T−H)

|ζ(σ + it)|2 dt ≪σ H. (2.1)

We have∫ T+H

T

|ζ(σ + iat+ iτ)|2 dt =
∫ T+H+τ/a

T+τ/a

|ζ(σ + iat)|2 dt ≪
∫ T+H+|τ |/|a|

T−H−|τ |/|a|
|ζ(σ + iat|2 dt. (2.2)

Therefore, if H + |τ |/|a| ⩽ T , then, by (2.1),∫ T+H

T

|ζ(σ + iat+ iτ)|2 dt ≪σ H + |τ |/|a| ≪σ,a H (1 + |τ |) .

It is well known that, for fixed 1/2 < σ < 1,∫ T

−T

|ζ(σ + it)|2 dt ≪σ T. (2.3)

If H + |τ |/|a| > T , then T +H + |τ |/|a| ⩽ 2(H + |τ |/|a|) and T −H −|τ |/|a| >
−2(H + |τ |/|a|). Therefore, in view of (2.2) and (2.3),∫ T+H

T

|ζ(σ + iat+ iτ)|2 dt ≪
∫ T+H+|τ |/|a|

T−H−|τ |/|a|
|ζ(σ + iat)|2 dt

≪a

∫ 2|a|(H+|τ |/|a|)

−2|a|(H+|τ |/|a|)
|ζ(σ + it)|2 dt ≪σ,a H + |τ | ≪σ,a H (1 + |τ |) .

⊓⊔

Since we consider the discrete universality, we need mean square estimates
of discrete type in short intervals. For this, the Gallagher lemma connecting
discrete and continuous mean squares of certain function is useful.

Lemma 3. Suppose that T0, T ⩾ δ > 0, T is a finite non-empty set in the
interval [T0 + δ/2, T0 + T − δ/2], and

Nδ(x) =
∑
t∈T

|t−x|<δ

1.



On Joint Discrete Universality in Short Intervals 601

Let the complex valued function S(t) be continuous on [T0, T0 + T ] and have a
continuous derivative on (T0, T0 + T ). Then,

∑
t∈T

N−1
δ (t)|S(t)|2 ⩽

1

δ

∫ T0+T

T0

|S(x)|2 dx+

(∫ T0+T

T0

|S(x)|2 dx
∫ T0+T

T0

|S′(x)|2 dx

)1/2

.

A proof of the lemma can be found, for example, in [13], Lemma 1.4.
Now, Lemmas 2 and 3 lead to the following statement.

Lemma 4. Suppose that 1/2 < σ ⩽ 13/22 is fixed, and a ∈ R \ {0}. Then
uniformly in M , |a|−1(|a|N)1/3(log |a|N)26/15 ⩽ M ⩽ N − 3,

N+M∑
k=N

|ζ(σ + iak + iτ)|2 ≪σ,a M (1 + |τ |) .

Proof. We take in Lemma 3 δ = 1, T0 = N − 1, T = M + 2, and T =
{N,N + 1, . . . , N +M}. Clearly, Nδ(x) = 1. Then an application of Lemma 3
with S(t) = ζ(σ + iat+ iτ) gives

N+M∑
k=N

|ζ(σ + iak + iτ)|2 ≪
∫ N+M+1

N−1

|ζ(σ + iat+ iτ)|2 dt

+

(∫ N+M+1

N−1

|ζ(σ + iat+ iτ)|2 dt
∫ N+M+1

N−1

|ζ ′(σ + iat+ iτ)|2 dt

)1/2

. (2.4)

In view of Lemma 2,∫ N+M+1

N−1

|ζ(σ + iat+ iτ)|2 dt ≪σ,a M (1 + |τ |) .

Hence, by the Cauchy integral formula,∫ N+M+1

N−1

|ζ ′(σ + iat+ iτ)|2 dt ≪σ,a M (1 + |τ |) .

The latter two estimates together with (2.4) prove the lemma. ⊓⊔

Next we apply Lemma 4 for estimation of the mean of the difference between
ζ(s) and ζu(s).

Lemma 5. Suppose that a ∈ R \ {0}, K ⊂ D is a compact set, and
|a|−1(|a|N)1/3(log |a|N)26/15 ⩽ M ⩽ N − 3. Then,

1

M + 1

N+M∑
m=N

sup
s∈K

|ζ(s+ iak)− ζu(s+ iak)|

≪ε,θ,K u−ε + u1/2−2ε exp{−c2|a|N}, c2 > 0.

Math. Model. Anal., 28(4):596–610, 2023.
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Proof. Denote, as usual, by Γ (s) the Euler gamma-function, and put

lu(s) =
s

θ
Γ
(s
θ

)
us,

where θ is from definition of vu(m). Then the Mellin formula

1

2πi

∫ b+i∞

b−i∞
Γ (s)d−s ds = e−d, b, d > 0,

imply the representation

ζu(s) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z)

lu(z)

z
dz. (2.5)

Fix 0 < ε < 1/11 such that 1/2 + 2ε ⩽ σ ⩽ 1 − ε for σ + it ∈ K. For such

σ, we see that θ1
def
= 1/2 + ε− σ < 0. Then, putting θ = 1/2 + ε and applying

residue theorem, we deduce from (2.5), for s ∈ K,

ζu(s)− ζ(s) =
1

2πi

∫ θ1+i∞

θ1−i∞
ζ(s+ z)

lu(z)

z
dz +

lu(1− s)

1− s
.

Therefore, for s ∈ K,

ζu(s+ iak)− ζ(s+ iak)

=
1

2πi

∫ ∞

−∞
ζ

(
1

2
+ε+it+iak + iτ

)
lu(1/2 + ε− σ + iτ)

1/2 + ε− σ + iτ
dτ+

lu(1− s− iak)

1− s− iak

=
1

2πi

∫ ∞

−∞
ζ

(
1

2
+ ε+ iak + iτ

)
lu(1/2 + ε− s+ iτ)

1/2 + ε− s+ iτ
dτ +

lu(1− s− iak)

1− s− iak

≪
∫ ∞

−∞

∣∣∣∣ζ (1

2
+ ε+ iak + iτ

)∣∣∣∣ sup
s∈K

∣∣∣∣ lu(1/2 + ε− s+ iτ)

1/2 + ε− s+ iτ

∣∣∣∣ dτ
+ sup

s∈K

∣∣∣∣ lu(1− s− iak)

1− s− iak

∣∣∣∣ .
Hence,

1

M + 1

N+M∑
k=N

sup
s∈K

|ζ(s+ iak)− ζu(s+ iak)|

≪
∫ ∞

−∞

(
1

M + 1

N+M∑
k=N

∣∣∣∣ζ (1

2
+ε+ iak+iτ

)∣∣∣∣
)

sup
s∈K

∣∣∣∣ lu(1/2 + ε−s+iτ)

1/2 + ε− s+ iτ

∣∣∣∣ dτ
+

1

M + 1

N+M∑
k=N

sup
s∈K

∣∣∣∣ lu(1− s− iak)

1− s− iak

∣∣∣∣ def= I + S. (2.6)

Lemma 4 implies the estimate

1

M + 1

N+M∑
k=N

∣∣∣∣ζ (1

2
+ ε+ iak + iτ

)∣∣∣∣
≪

(
1

M+1

N+M∑
k=N

∣∣∣∣ζ (1

2
+ε+iak+iτ

)∣∣∣∣2
)1/2

≪ε,a (1 + |τ |)1/2 . (2.7)
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For large |t|, there exists a constant c > 0 such that

Γ (σ + it) ≪ exp{−c|t|} (2.8)

uniformly in σ ∈ [σ1, σ2] with every σ1 < σ2. Therefore, for

lu(1/2 + ε− s+ iτ)

1/2 + ε− s+ iτ
≪θ u1/2+ε−σ exp

{
− c

θ
|τ − k|

}
≪θ,K u−ε exp{−c1|τ |},

c1 > 0,

because t is bounded for s ∈ K. This together with (2.7) shows that

I ≪ε,θ,K u−ε

∫ ∞

−∞
(1 + |τ |)1/2 exp{−c1|τ |}dτ ≪ε,θ,K u−ε. (2.9)

Similarly as above, using (2.8), we find for all s ∈ K

lu(1− s− iak)

1− s− iak
≪θ u1−σ exp

{
− c

θ
|t+ ak|

}
≪θ,K u1/2−2ε exp{−c2|a|k},

c2 > 0.

Hence,

S ≪θ,K u1/2−2ε 1

M + 1

N+M∑
k=N

exp{−c2|a|k} ≪θ,K u1/2−2ε exp{−c2|a|N}.

This, (2.9) and (2.6) prove the lemma. ⊓⊔

3 Limit theorems

In this section, we will discuss the weak convergence for some measures defined
on (Hr(D),B(Hr(D))). We start with a limit lemma on the space Ωr. For its
proof the following result on linear forms in logarithms of algebraic numbers
will be useful, see, for example, [1].

Lemma 6. Suppose that the system of logarithms log λ1, . . . , log λr of algebraic
numbers λ1, . . . , λr is linearly independent over Q. Then, for any algebraic
numbers β0, . . . , βr not all simultaneously zero, the inequality

|β0 + β1 log λ1 + · · ·+ βr log λr| > h−c,

where h is the maximum of the heights of the numbers β0, . . . , βr, and c is an
effective constant depending on r, λ1, . . . , λr and the maximum of the powers
of the numbers β0, . . . , βr.

For A ∈ B(Ωr), define

QN,M (A) =
1

M + 1
#
{
N ⩽ k ⩽ N +M :

(
(p−2πia1k : p ∈ P), . . . ,

(p−2πiark : p ∈ P)
)
∈ A

}
.

Math. Model. Anal., 28(4):596–610, 2023.
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Lemma 7. Suppose that a1, . . . , ar are real algebraic numbers linearly indepen-

dent over Q, and ̂̂a(Nâ)1/3(logNâ)26/15 ⩽ M ⩽ N − 3. Then QN,M converges
weakly to the Haar measure mH as N → ∞.

Proof. We use the Fourier transform method. The Fourier transform gN,M (k1,
. . . , kr), kj = (kjp : kjp ∈ Z, p ∈ P), j = 1, . . . , r, is defined by

gN,M (k1, . . . , kr) =

∫
Ωr

( r∏
j=1

∏∗

p∈P
ω
kjp

j (p)

)
dQN,M ,

where the star “∗” indicates that only a finite number of integers kjp are distinct
from zero. Hence, the definition of QN,M implies

gN,M (k1, . . . , kr) =
1

M + 1

N+M∑
k=N

( r∏
j=1

∏∗

p∈P
p−2πiajkkjp

)

=
1

M + 1

N+M∑
k=N

exp

{
− 2πik

r∑
j=1

aj
∑∗

p∈P
kjp log p

}
. (3.1)

Obviously,
gM,N (0, . . . , 0) = 1. (3.2)

Now suppose that (k1, . . . , kr) ̸= (0, . . . , 0). Then there exists j ∈ {1, . . . , r}
such that kj ̸= 0. Hence, kjp̂ ̸= 0 for some prime p̂. Define

κp̂ =

r∑
j=1

ajkjp̂.

Since the numbers a1, . . . , ar are linearly independent over Q, κp̂ ̸= 0. The set
{log p : p ∈ P} is linearly independent over Q. Therefore, an application of
Lemma 6 gives

Ak1,...,kr

def
=

r∑
j=1

∑∗

p∈P
ajkjp log p =

∑∗

p∈P
κp̂ log p ̸= l, l ∈ Z.

Thus, in (3.1) we have the geometric progression, and find

gN,M (k1, . . . , kr) =
exp{−iNAk1,...,kr

} − exp{−2πi(N +M + 1}Ak1,...,kr
}

(M + 1)(1− exp{−2πiAk1,...,kr
})

.

This and (3.2) show that

lim
N→∞

gN,M (k1, . . . , kr) =

{
1, if (k1, . . . , kr) = (0, . . . , 0),
0, if (k1, . . . , kr) ̸= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the
Haar measure mH , we obtain by a continuity theorem for probability measures
on compact groups that QN,M converges weakly to mH as N → ∞. ⊓⊔
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Let, for brevity, a = (a1, . . . , ar), and

ζ
u
(s+ 2πiak) = (ζu(s+ 2πia1k), . . . , ζu(s+ 2πiark)) ,

ζ(s+ 2πiak) = (ζ(s+ 2πia1k), . . . , ζ(s+ 2πiark)) .

For A ∈ B(Hr(D)) and n ∈ N, define

PN,M,n(A) =
1

M + 1
#
{
N ⩽ k ⩽ N +M : ζ

n
(s+ 2πiak) ∈ A

}
.

Let wu : Ωr → Hr(D) be given by wu(ω) = ζ
u
(s, ω), where

ζ
u
(s, ω) = (ζu(s, ω1), . . . , ζu(s, ωr)) ,

ζu(s, ωj) =

∞∑
m=1

ωj(m)vu(m)

ms
, ωj(m) =

∏
pl|m

pl+1∤m

ωl
j(p), j = 1, . . . , r.

By the definition of wu, we have

wu

(
(p−2πia1k : p ∈ P), . . . , (p−2πiark : p ∈ P)

)
= ζ

u
(s+ 2πiak).

Therefore,

PN,M,n(A) =
1

M + 1
#
{
N ⩽ k ⩽ N +M :(

(p−2πia1k : p ∈ P), . . . , (p−2πiark : p ∈ P)
)
∈ w−1

n A
}

for every A ∈ B(Hr(D)). Thus, PN,M,n = QN,Mw−1
n . Since the series for

ζn(s, ωj), j = 1, . . . , r, are absolutely convergent, the mapping wn is continuous.
Therefore, Lemma 7, Theorem 5.1 of [3], and the notation Vn = mHw−1

n lead
to the following limit lemma.

Lemma 8. Under hypotheses of Lemma 7, PN,M,n converges weakly to the
measure Vn as n → ∞.

The measure Vn is independent on any hypotheses, and is important for
the future. From Lemma 8 and proof of Theorem 3 in [9], the following limit
lemma follows. Denote by Pζ the distribution of the random element ζ(s, ω),
and put

S = {g ∈ H(D) : g(s) ̸= 0 on D or g(s) ≡ 0} .

Lemma 9. The measure Vn converges weakly to Pζ as n → ∞. Moreover, the
support of Pζ is the set Sr.

Now we are ready to prove a limit theorem for

PN,M (A) =
1

M + 1
#
{
N ⩽ N +M : ζ(s+ 2πiak) ∈ A

}
, A ∈ B(Hr(D)).

For this, it suffices to show that PN,M as N → ∞ and Vn as n → ∞ converge
weakly to the same limit measure. We will use the convergence in distribution

(
D−−→).

Math. Model. Anal., 28(4):596–610, 2023.
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Theorem 3. Under hypotheses of Theorem 1, PN,M converges weakly to the
measure Pζ as N → ∞.

Proof. On a certain probability space with measure µ, define a random vari-
able θN,M having the distribution

µ{θN,M = k} = 1/(M + 1), k = N, . . . , N +M.

Denote by Xn = Xn(s) the Hr(D)-valued random element with distribution
Vn. Moreover, define the Hr(D)-valued random element

XN,M,n = XN,M,n(s) = ζ
n
(s+ 2πiaθN,M ).

Then, in view of Lemma 8,

XN,M,n
D−−−−→

N→∞
Xn, (3.3)

and, by Lemma 9,

Xn
D−−−−→

n→∞
Pζ . (3.4)

Define one more Hr(D)-valued random element

XN,M = XN,M (s) = ζ(s+ 2πiaθN,M ).

Let, for g1, g2 ∈ H(D),

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

,

where {Kl : l ∈ N} ⊂ D is a sequence embedded compact sets such that
D =

⋃∞
l=1 Kl, and every compact set K ⊂ D lies in a certain Kl. For example,

we can take embedded closed rectangles. Then ρ is a metric in H(D) inducing
the topology of uniform convergence on compacta. Let g

1
= (g11, . . . , g1r), g2 =

(g21, . . . , g2r) ∈ Hr(D). Then,

ρ(g
1
, g

2
) = max

1⩽j⩽r
ρ(g1j , g2j)

is a metric in Hr(D) inducing the product topology.
Now, return to Lemma 5. Using the definition of the metric ρ, we obtain

from Lemma 5 that

lim
n→∞

lim sup
N→∞

1

M + 1

N+M∑
k=N

ρ
(
ζ(s+ 2πiak), ζ

n
(s+ 2πiak)

)
= 0.

Therefore, the definitions of XN,M and XN,M,n show that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
{
ρ(XN,M , XN,M,n) ⩾ ε

}
⩽ lim

n→∞
lim sup
N→∞

1

ε(M + 1)

N+M∑
k=N

ρ
(
ζ(s+ 2πiak), ζ

n
(s+ 2πiak)

)
= 0.
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This, (3.3), (3.4) and Theorem 4.2 of [3] imply the relation

XN,M
D−−−−→

N→∞
Pζ ,

which is equivalent to the assertion of the theorem. ⊓⊔

For the proof of Theorem 2, we need the analogue of Theorem 3 for

PN,M,uN
(A) =

1

M + 1
#
{
N ⩽ k ⩽ N +M : ζ

uN
(s+ 2πiak) ∈ A

}
,

A ∈ B(Hr(D)).

Theorem 4. Under hypotheses of Theorem 2, PN,M,uN
converges weakly to Pζ

as N → ∞.

Proof. Let θN,M and XN,M be the same random objects as in proof of Theo-
rem 3. Define one more Hr(D)-valued random element

XM,N,uN
= XM,N,uN

(s) = ζ
uN

(s+ 2πiakθM,N ).

Let F be a fixed closed set of the space Hr(D), ε > 0 and Fε = {g ∈ Hr(D) :
ρ(g, F ) ⩽ ε}, where ρ(g, F ) = infg

1
∈F ρ(g, g

1
). Then again the set Fε is closed.

By Theorem 3 and the equivalent of weak convergence in terms of closed
sets, see Theorem 2.1 of [3],

lim sup
N→∞

µ {XN,M ∈ Fε} ⩽ Pζ(Fε). (3.5)

Since

{XN,M,uN
∈ F} ⊂ {XN,M ∈ Fε} ∪

{
ρ(XM,N , XM,N,uN

) ⩾ ε
}
,

we have

µ {XN,M,uN
∈ F} ⩽ µ {XN,M ∈ Fε}+ µ

{
ρ(XM,N , XM,N,uN

) ⩾ ε
}
. (3.6)

In virtue of Lemma 5,

lim
N→∞

µ
{
ρ(XM,N , XM,N,uN

) ⩾ ε
}

⩽
1

ε(M + 1)

M+N∑
k=M

ρ
(
ζ(s+ 2πiak), ζ

uN
(s+ 2πiak)

)
= 0.

This, (3.5) and (3.6) show that

lim sup
N→∞

µ {XN,M,uN
∈ F} ⩽ Pζ(Fε).

Taking ε → 0+, we obtain that

lim sup
N→∞

µ {XN,M,uN
∈ F} ⩽ Pζ(F ),

thus, PN,M,uN
converges weakly to Pζ as N → ∞. ⊓⊔

Math. Model. Anal., 28(4):596–610, 2023.
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4 Proof of the main theorems

We continue with recalling the famous Mergelyan theorem on approximation
of analytic functions by polynomials [12].

Lemma 10. Suppose that K ⊂ C is a compact set with connected complement,
and g(s) is a continuous function on K and analytic in the interior of K.
Then, for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K

|g(s)− p(s)| < ε.

Proof. (Proof of Theorem 1). Since fj(s) ̸= 0 on Kj , an application of Lem-
ma 10 for log fj(s), j = 1, . . . , r, shows that there exist polynomials p1(s), . . . ,
pr(s) such that

sup
1⩽j⩽r

sup
s∈Kj

∣∣∣fj(s)− epj(s)
∣∣∣ < ε/2. (4.1)

Define the set

Gε =
{
(g1, . . . , gr) ∈ Hr(D) : sup

1⩽j⩽r
sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε/2

}
.

Then, in view of Lemma 9, the set Gε is an open neighbourhood of the element
(ep1(s), . . . , epr(s)) which lies in the support Sr of the measure Pζ . Thus,

Pζ(Gε) > 0. (4.2)

Define one more set

Ĝε =
{
(g1, . . . , gr) ∈ Hr(D) : sup

1⩽j⩽r
sup
s∈K

|gj(s)− fj(s)| < ε
}
.

Then, inequality (4.1) implies the inclusion Gε ⊂ Ĝε. Thus PN,M (Ĝε) > 0 in
virtue of (4.2), and, by Theorem 3 and the equivalent of weak convergence in
terms of open sets, see Theorem 2.1 of [3],

lim inf
N→∞

PN,M (Ĝε) ⩾ Pζ(Ĝε) > 0. (4.3)

Therefore, the definitions of PN,M and Ĝε prove the first assertion of the the-
orem.

To prove the second assertion of the theorem, we observe that the boundary
∂Ĝε lies in the set{

(g1, . . . , gr) ∈ Hr(D) : sup
1⩽j⩽r

sup
s∈K

|gj(s)− fj(s)| = ε
}
.

Therefore, the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive

ε1 and ε2. Hence, Pζ(∂Ĝε) > 0 for at most countably many ε > 0, thus, the

set Ĝε is a continuity set of the measure Pζ for all but at most countably many
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ε > 0. Therefore, by Theorem 3 and the equivalent of weak convergence in
terms of continuity sets, see Theorem 2.1 of [3], the limit

lim
N→∞

PN,M (Ĝε) = Pζ(Ĝε)

exists for all but at most countably many ε > 0, and is positive in view of (4.3).

Thus, the definitions of PN,M and Ĝε give the second assertion of the theorem.
⊓⊔

Proof. (Proof of Theorem 2). The mapping w : Hr(D) → R given by

w(g1, . . . , gr) = sup
1⩽j⩽r

sup
s∈Kj

|gj(s)− fj(s)|, (g1, . . . , gr) ∈ Hr(D),

is continuous. Therefore, Theorem 4 and Theorem 5.1 of [3] show that

1

M+1
#
{
N ⩽ k ⩽ N+M : sup

1⩽j⩽r
sup
s∈Kj

|ζ
uN

(s+2πiak)−fj(s)|∈A
}
, A∈B(R),

converges weakly to

mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| ∈ A
}
, A ∈ B(R),

as N → ∞. From this, it follows that the corresponding distribution function

1

M + 1
#
{
N ⩽ k ⩽ N +M : sup

1⩽j⩽r
sup
s∈Kj

|ζ
uN

(s+ 2πiak)− fj(s)| < ε
}

converges weakly to the distribution function

mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε
}

as N → ∞, i.e.,

lim
N→∞

1

M + 1
#
{
N ⩽ k ⩽ N +M : sup

1⩽j⩽r
sup
s∈Kj

|ζ
uN

(s+ 2πiak)− fj(s)| < ε
}

= mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε
}

(4.4)

for all continuity points ε of the right-hand side. Since the set of discontinuity
points of a distribution function is at most countable, we find that (4.4) is true
for all but at most countably many ε > 0. The positivity of the right-hand side
of (4.4) was obtained in the proof of Theorem 1. ⊓⊔

References

[1] A. Baker. The theory of linear forms in logarithms. In Transcendence Theory:
Advances and Applications, pp. 1–27, Boston, 1977. Academic Press.

Math. Model. Anal., 28(4):596–610, 2023.



610 K. Chakraborty, Sh. Kanemitsu and A. Laurinčikas
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