Generalized Laplace transform and tempered Ψ-Caputo fractional derivative

    Milan Medveď   Affiliation
    ; Michal Pospíšil   Affiliation


In this paper, images of the tempered Ψ-Hilfer fractional integral and the tempered Ψ-Caputo fractional derivative under the generalized Laplace transform are derived. The results are applied to find a solution to an initial value problem for a nonhomogeneous linear fractional differential equation with the tempered Ψ-Caputo fractional derivative of an order α for n− 1 <α<n∈N. An illustrative example is given for 0 <α< 1 comparing solutions to the same initial value problem but with different tempering and Ψ.

Keyword : Laplace transform, fractional derivative, fractional differential equation, representation of solution

How to Cite
Medveď, M., & Pospíšil, M. (2023). Generalized Laplace transform and tempered Ψ-Caputo fractional derivative. Mathematical Modelling and Analysis, 28(1), 146–162.
Published in Issue
Jan 19, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


R. Almeida. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simulat., 44:460–481, 2017.

R. Almeida, A.B. Malinowska and M.T. Monteiro. Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications. Math. Methods Appl. Sci., 41(1):336–352, 2018.

J. Chen, B. Zhuang, Y.Q. Chen and B. Cui. Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers. ISA Trans., 82(November):94–106, 2018.

A. Erdélyi. Higher Transcendental Functions, vol. 3. McGraw-Hill Book Company, Inc., 1955.

J. Hale. Theory of Functional Differential Equations, volume 3 of Applied Mathematical Sciences. Springer-Verlag, 1977.

F. Jarad and T. Abdeljawad. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal., 1(2):88–98, 2018.

F. Jarad and T. Abdeljawad. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst.-Ser. S, 13(3):709–722, 2020.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo. Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., 2006.

M. Medveď and E. Brestovanská. Differential equations with tempered ψ-Caputo fractional derivative. Math. Model. Anal., 26(4):631–650, 2021.

I. Podlubny. Fractional Differential Equations. Academic Press, 1999.

M. Pospíšil. Laplace transform, Gronwall inequality and delay differential equations for general conformable fractional derivative. Commun. Math. Anal., 22(1):14–33, 2019.

M. Pospíšil and F. Jaroš. On the representation of solutions of delayed differential equations via Laplace transform. Electron. J. Qual. Theory Differ. Equ., (117):1– 13, 2016.

F. Sabzikar, M.M. Meerschaert and J. Chen. Tempered fractional calculus. J. Comput. Phys., 293:14–28, 2015.

J.L. Schiff. Laplace Transform: Theory and Applications. Springer-Verlag, 1999.

K. Shah, M.A. Alqudah, F. Jarad and T. Abdeljawad. Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative. Chaos Solitons Fractals, 135(June):109754, 2020.

E.T. Whittaker and G.N. Watson. A Course of Modern Analysis, 4th ed. Cambridge University Press, 1963.

X.J. Yang, F. Gao and Y. Ju. General Fractional Derivatives with Applications in Viscoelasticity. Academic Press, 2020.

X.J. Yang and J.A. Tenreiro Machado. A new fractional operator of variable order: Application in the description of anomalous diffusion. Physica A, 481(September):276–283, 2017.