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1 Introduction

Unilateral Laplace transform defined as

L{f(t)}(s) =
∫ ∞

0

e−stf(t)dt

for an exponentially bounded function f : [0,∞) → R is a classic tool used in
theory of ordinary differential equations to find a solution to an initial value
problem. Same transform can be used for differential equations with constant
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delays (see e.g., [5,12]) or fractional derivative (cf. [8,10,11]). Recently, a mod-
ification of the Laplace transform was applied in [7] to differential equations
with Riemann-Liouville and Caputo type fractional derivatives derived from
Ψ -Hilfer fractional integral. In this paper, we apply this generalized Laplace
transform to find solutions of fractional differential equations containing a
newly defined [9] tempered Ψ -Caputo fractional derivative which represents a
connection between tempered Caputo derivative [13] and Ψ -Caputo fractional
derivative [1].

Our results for linear differential equations are in a good agreement with
solutions found in [7] if we neglect tempering, as well as with solutions from [9]
to homogeneous equations. The results for differential equations can be easily
applied to systems (see Remark 3).

We note that generalizations of the classic Caputo fractional derivative such
as the above mentioned ones provide more flexible alternatives with practical
applications e.g. in viscoelasticity [17] or diffusion processes [3, 18] (see also
references therein). Method of Laplace transform was also applied in [15] along
with Adomian decomposition to obtaind a semi-analytical solution to a nonlin-
ear fractional differential equation with Caputo–Fabrizio fractional derivative.
In [6], ρ-Laplace transform, which is a particular case of the generalized Laplace
transform, was used to solve equations containing generalized Caputo deriva-
tive.

The paper is organized as follows. In the next section, we collect prelimi-
nary results. In Section 3, we derive images of the tempered Ψ -Hilfer fractional
integral and the tempered Ψ -Caputo fractional derivative under the general-
ized Laplace transform. The final section is devoted to Cauchy problems for
differential equations with the tempered Ψ -Caputo fractional derivative.

Throughout the paper, we denote by N, N0 the set of all positive and non-
negative integers, respectively.

2 Preliminary results

In this section, we recall some known and other results that will be helpful for
next sections.

First, we recall results from [7] on a generalized Laplace transform.

Definition 1. Let f ∈ C[a,∞) and Ψ ∈ C1[a,∞) satisfy the assumption

H Ψ ′(t) > 0 for all t ∈ [a,∞), and limt→∞ Ψ(t) = ∞.

The generalized Laplace transform of f is defined by

LΨ{f(t)}(s) =
∫ ∞

a

e−s(Ψ(t)−Ψ(a))f(t)Ψ ′(t)dt

for all values of s such that the integral is valid.

Theorem 1. If f ∈ C[a,∞) is of Ψ(t)-exponential order, i.e., there exist non-
negative constants M , c and T ≥ a such that |f(t)| ≤ MecΨ(t) for all t ≥ T ,
then LΨ{f(t)} exists on (c,∞).
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Remark 1. Let f ∈ C[a,∞) be of Ψ(t)-exponential order for some increasing
Ψ ∈ C[a,∞), and M, c ≥ 0, T ≥ a be such that |f(t)| ≤ MecΨ(t) for all
t ≥ T . Then the continuity of f gives the existence of M1 ≥ 0 such that
maxt∈[a,T ] |f(t)| ≤ M1. So taking M̃ = max{M,M1e

−cΨ(a)}, the increasing

property of Ψ implies |f(t)| ≤ M̃ecΨ(t) for all t ≥ a. Therefore, whenever Ψ is
increasing, we can take T = a.

Furthermore, when Ψ is increasing, we can always assume that c > 0.
Indeed, if Ψ(t) ≥ 0 for all t ≥ a, this is obvious. If Ψ(a) < 0, we have

|f(t)| ≤ MecΨ(t) ≤ MecΨ(t)eε(Ψ(t)−Ψ(a)) = (Me−εΨ(a))e(c+ε)Ψ(t)

for all t ≥ a, where ε > 0 is arbitrary fixed.

The next lemma concludes some of the properties of the generalized Laplace
transform (for some other properties see [7]).

Lemma 1. Let Ψ ∈ C1[a,∞) satisfy assumption H. The generalized Laplace
transform has the following properties:

1. LΨ{(f ∗Ψ g)(t)} = LΨ{f(t)}LΨ{g(t)} for appropriate functions f , g of
Ψ(t)-exponential order, where

(f ∗Ψ g)(t) =

∫ t

a

f(s)g
(
Ψ−1(Ψ(t) + Ψ(a)− Ψ(s))

)
Ψ ′(s)ds

is a generalized convolution (cf. [7]). We shall call this particular convo-
lution Ψ -convolution.

2. If α > 0, λ ≥ 0, then

LΨ

{
[Ψ(t)− Ψ(a)]α−1e−λ(Ψ(t)−Ψ(a))

}
(s) =

Γ (α)

(s+ λ)α

for s > −λ, where Γ (z) =
∫∞
0

tz−1e−tdt is the Euler gamma function
(cf. [16]).

Proof. For the proof of statement 1 see [7, Theorem 3.10]. To prove statement
2 we set q = Ψ(t)− Ψ(a) to derive

LΨ

{
[Ψ(t)− Ψ(a)]α−1e−λ(Ψ(t)−Ψ(a))

}
(s)

=

∫ ∞

a

[Ψ(t)− Ψ(a)]α−1e−(s+λ)[Ψ(t)−Ψ(a)]Ψ ′(t)dt

=

∫ ∞

0

qα−1e−(s+λ)qdq =
1

(s+ λ)α

∫ ∞

0

q̃α−1e−q̃dq̃ =
Γ (α)

(s+ λ)α
.

Condition s+ λ > 0 was needed when we changed q̃ = (s+ λ)q. ⊓⊔

We shall also need the following result from [7, Corollary 2].
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Lemma 2. Let Ψ ∈ Cn−1[a,∞) satisfy assumption H. Let f ∈ Cn−1[a,∞) be
such that

f
[k]
Ψ (t) =

(
1

Ψ ′(t)

d

dt

)k

f(t)

is of Ψ(t)-exponential order for each k = 1, 2, . . . , n − 1, and f
[n]
Ψ ∈ C[a,∞).

Then the generalized Laplace transform of f
[n]
Ψ exists and

LΨ{f [n]
Ψ (t)}(s) = snLΨ{f(t)}(s)−

n−1∑
k=0

sn−k−1f
[k]
Ψ (a).

In the rest of the paper, we shall denote x
[0]
Ψ (t) = x(t).

The following definitions of a generalized fractional integral and a corre-
sponding Caputo-like fractional derivative are from [9].

Definition 2. Let α > 0, λ ≥ 0, the real function x(t) be continuous on
[a, b] and Ψ ∈ C1[a, b] be an increasing function. Then the tempered Ψ -Hilfer
fractional integral of order α is defined by

Iα,λ,Ψa x(t) =
1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)x(s)ds

for t ∈ [a, b].

Definition 3. Let Ψ ∈ Cn[a, b] be such that Ψ ′(t) > 0 for all t ∈ [a, b]. For
n − 1 < α < n, n ∈ N, λ ≥ 0, the tempered Ψ -Caputo fractional derivative of
order α is defined by

CDα,λ,Ψ
a x(t) =

e−λΨ(t)

Γ (n− α)

∫ t

a

(Ψ(t)− Ψ(s))n−α−1Ψ ′(s)x
[n]
λ,Ψ (s)ds

for t ∈ [a, b], where

x
[n]
λ,Ψ (t) =

[
1

Ψ ′(t)

d

dt

]n (
eλΨ(t)x(t)

)
.

Note that using the Ψ -convolution we can write

Iα,λ,Ψa x(t) =
1

Γ (α)

(
[Ψ(·)− Ψ(a)]α−1e−λ(Ψ(·)−Ψ(a)) ∗Ψ x

)
(t). (2.1)

Moreover,

x
[n]
λ,Ψ (t) =

(
eλΨ(·)x(·)

)[n]
Ψ

(t). (2.2)

Let us recall that the tempered Ψ -Hilfer fractional integral, Iα,λ,Ψa x(t), and
the tempered Ψ -Caputo fractional derivative, CDα,λ,Ψ

a x(t), are generalizations
of the Ψ -Hilfer fractional integral (known also as a left-sided fractional integral
with respect to another function Ψ (see e.g. [8, Chapter 2.5])), Iα,Ψa x(t), and
the Ψ -Caputo fractional derivative, CDα,Ψ

a x(t) (cf. [1]), respectively. More
precisely,

Iα,Ψa x(t) = Iα,0,Ψa x(t), CDα,Ψ
a x(t) = CDα,0,Ψ

a x(t).

The following lemma provides a generalization of [1, Theorem 4].

Math. Model. Anal., 28(1):146–162, 2023.
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Lemma 3. Let f ∈ Cn[a, b] and n − 1 < α < n for some n ∈ N, and Ψ ∈
Cn[a, b] be such that Ψ ′(t) > 0 for all t ∈ [a, b]. Then

Iα−k,Ψ
a

CDα,Ψ
a x(t) = x

[k]
Ψ (t)−

n−1∑
j=k

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
Ψ (a)

for each k = 0, 1, . . . , n− 1 and all t ∈ [a, b].

Proof. Let us fix any k ∈ {0, 1, . . . , n − 1}. First, we rewrite the derivative
using integral [1], and then we apply a semigroup property of the Ψ -Hilfer
fractional integral [8, Lemma 2.26] to get

Iα−k,Ψ
a

CDα,Ψ
a x(t) = Iα−k,Ψ

a In−α,Ψ
a (x

[n]
Ψ (t)) = In−k,Ψ

a (x
[n]
Ψ (t)).

Consequently, we use the definition of Iα,Ψa and apply the integration by parts
several times to derive

In−k,Ψ
a (x

[n]
Ψ (t)) =

1

Γ (n− k)

∫ t

a

(Ψ(t)− Ψ(s))n−k−1Ψ ′(s)x
[n]
Ψ (s)ds

=
1

(n− k − 1)!

∫ t

a

(Ψ(t)− Ψ(s))n−k−1 d

ds
x
[n−1]
Ψ (s)ds

= − (Ψ(t)− Ψ(a))n−k−1

(n− k − 1)!
x
[n−1]
Ψ (a)

+
1

(n− k − 2)!

∫ t

a

(Ψ(t)− Ψ(s))n−k−2Ψ ′(s)x
[n−1]
Ψ (s)ds

= · · · = −
n−1∑

j=k+2

(Ψ(t)−Ψ(a))j−k

(j − k)!
x
[j]
Ψ (a)+

∫ t

a

(Ψ(t)−Ψ(s))Ψ ′(s)x
[k+2]
Ψ (s)ds

= −
n−1∑

j=k+2

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
Ψ (a) +

∫ t

a

(Ψ(t)− Ψ(s))
d

ds
x
[k+1]
Ψ (s)ds

= −
n−1∑

j=k+1

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
Ψ (a) +

∫ t

a

Ψ ′(s)x
[k+1]
Ψ (s)ds

= −
n−1∑

j=k+1

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
Ψ (a) +

∫ t

a

d

ds
x
[k]
Ψ (s)ds

= x
[k]
Ψ (t)−

n−1∑
j=k

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
Ψ (a).

This completes the proof. ⊓⊔

We end this section with a particular case of [9, Theorem 2]. We remark
that originally the lemma was proved for α ∈ (0, 1), but the proof works for
any α > 0.
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Lemma 4. Let λ > 0, α > 0, p > 1, p(α − 1) + 1 > 0, q = p
p−1 , b ≥ 0,

r ∈ C[a,∞) be a nonnegative increasing function, Ψ ∈ C1[a,∞) be such that
Ψ ′(t) > 0 for all t ≥ a, and u(t) be a nonnegative function satisfying

u(t) ≤ r(t) + b

∫ t

a

((Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)u(s)ds

for all t ≥ a. Then u(t) ≤ R(t)eB(Ψ(t)−Ψ(a)), t ≥ a, where

R(t) = 2
1
p r(t), B =

2q−1

q

(
Γ (p(α− 1) + 1)

(pλ)p(α−1)+1

) q
p

bq.

3 Generalized Laplace transform and tempered
Ψ-fractional calculus

In this section, we derive some properties of the generalized Laplace transform
usable for tempered Ψ -fractional calculus.

Lemma 5. Let α > 0, λ ≥ 0, Ψ ∈ C1[a,∞) satisfy assumption H and x ∈
C[a,∞). Then

LΨ{Iα,λ,Ψa x(t)}(s) = LΨ{x(t)}(s)
(s+ λ)α

for all s > −λ such that the right-hand side exists.

Proof. To simplify the notation, we denote XΨ (s) = LΨ{x(t)}(s). Using
identity (2.1) and Lemma 1, we obtain

LΨ{Iα,λ,Ψa x(t)}(s)= 1

Γ (α)
LΨ

{(
[Ψ(·)−Ψ(a)]α−1e−λ(Ψ(·)−Ψ(a)) ∗Ψ x

)
(t)
}
(s)

=
1

Γ (α)
LΨ

{
[Ψ(t)− Ψ(a)]α−1e−λ(Ψ(t)−Ψ(a))

}
(s)XΨ (s) =

XΨ (s)

(s+ λ)α
.

⊓⊔

Lemma 6. Let n−1 < α < n for some n ∈ N, λ ≥ 0, and Ψ ∈ Cn[a,∞) satisfy

assumption H. Let x ∈ Cn[a,∞) be such that x
[k]
λ,Ψ is of Ψ(t)-exponential order

for each k = 1, 2, . . . , n− 1, and x
[n]
λ,Ψ ∈ C[a,∞). Then

LΨ{CDα,λ,Ψ
a x(t)}(s) = (s+λ)αLΨ{x(t)}(s)− e−λΨ(a)

n−1∑
k=0

(s+λ)α−k−1x
[k]
λ,Ψ (a).

Proof. Using the relations

CDα,λ,Ψ
a x(t)=e−λΨ(t)CDα,Ψ

a (eλΨ(t)x(t)), Iα,λ,Ψa x(t)=e−λΨ(t)Iα,Ψa (eλΨ(t)x(t)),
(3.1)

from [9], formula

CDα,Ψ
a x(t) = In−α,Ψ

a

[( 1

Ψ ′(t)

d

dt

)n
x(t)

]
= In−α,Ψ

a (x
[n]
Ψ (t)),
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from [2] and relation (2.2), we obtain

CDα,λ,Ψ
a x(t) =e−λΨ(t)CDα,Ψ

a (eλΨ(t)x(t)) = e−λΨ(t)In−α,Ψ
a ([eλΨ(·)x(·)][n]Ψ (t))

=e−λΨ(t)In−α,Ψ
a (x

[n]
λ,Ψ (t)) = In−α,λ,Ψ

a (e−λΨ(t)x
[n]
λ,Ψ (t)).

Then by Lemma 5, we get

LΨ{CDα,λ,Ψ
a x(t)}(s) = LΨ{In−α,λ,Ψ

a (e−λΨ(t)x
[n]
λ,Ψ (t))}(s)

= LΨ{e−λΨ(t)x
[n]
λ,Ψ (t)}(s)/(s+ λ)n−α.

Next, we apply [7, Theorem 3.2] stating

LΨ{f(t)}(s) = L{f(Ψ−1(t+ Ψ(a)))}(s) (3.2)

for appropriate function f , where L is the usual unilateral Laplace transform
[14], to be able to make use of its translation property [14, Theorem 1.27],

L{eµtf(t)}(s) = L{f(t)}(s− µ).

So, we have

LΨ{CDα,λ,Ψ
a x(t)}(s) = L{e−λ(t+Ψ(a))x

[n]
λ,Ψ (Ψ

−1(t+ Ψ(a)))}(s)/(s+ λ)n−α

= e−λΨ(a)L{x[n]
λ,Ψ (Ψ

−1(t+ Ψ(a)))}(s+ λ)/(s+ λ)n−α

=
e−λΨ(a)LΨ{x[n]

λ,Ψ (t)}(s+ λ)

(s+ λ)n−α
=

e−λΨ(a)LΨ{(eλΨ(·)x(·))[n]Ψ (t)}(s+ λ)

(s+ λ)n−α
.

We finish the proof by Lemma 2 to get

LΨ{CDα,λ,Ψ
a x(t)}(s) = e−λΨ(a)

(s+ λ)n−α

[
(s+ λ)nLΨ{eλΨ(t)x(t)}(s+ λ)

−
n−1∑
k=0

(s+ λ)n−k−1(eλΨ(·)x(·))[k]Ψ (a)
]

= e−λΨ(a)(s+ λ)αL{eλ(t+Ψ(a))x(Ψ−1(t+ Ψ(a)))}(s+ λ)

− e−λΨ(a)
n−1∑
k=0

(s+ λ)α−k−1x
[k]
λ,Ψ (a)

= (s+ λ)αL{x(Ψ−1(t+ Ψ(a)))}(s)− e−λΨ(a)
n−1∑
k=0

(s+ λ)α−k−1x
[k]
λ,Ψ (a)

= (s+ λ)αLΨ{x(t)}(s)− e−λΨ(a)
n−1∑
k=0

(s+ λ)α−k−1x
[k]
λ,Ψ (a).

⊓⊔
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4 Application to differential equations

In this section, we apply the generalized Laplace transform to differential equa-
tions with tempered Ψ -Caputo fractional derivative to obtain a formula for the
solution. In particular, we consider the following initial value problem

CDα,λ,Ψ
a x(t) = F (t, x(t)), t ≥ a, (4.1)

x
[k]
λ,Ψ (a) = xk

a, k = 0, 1, . . . , n− 1 (4.2)

for some constants xk
a, k = 0, 1, . . . , n − 1, where n − 1 < α < n ∈ N, λ ≥ 0,

Ψ ∈ Cn[a,∞) is such that Ψ ′(t) > 0 for all t ≥ a, and F ∈ C([a,∞) × R,R).
Let us recall that x

[0]
λ,Ψ (t) = eλΨ(t)x(t).

Definition 4. A function x ∈ Cn[a,∞) is a solution to the initial value prob-
lem (4.1), (4.2), if CDα,λ,Ψ

a x(t) exists and is continuous on (a,∞), and x(t)
fulfills Equation (4.1) and initial conditions (4.2).

Theorem 2. Function x is a solution to initial value problem (4.1)–(4.2) if
and only if it solves the integral equation

x(t) =e−λΨ(t)
n−1∑
j=0

(Ψ(t)− Ψ(a))j

j!
xj
a

+
1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)F (s, x(s))ds (4.3)

for all t ≥ a.

Proof. Applying the operator Iα,λ,Ψa to Eq. (4.1) while using [9, Lemma 1]
results in

Iα,λ,Ψa
CDα,λ,Ψ

a x(t) =x(t)− e−λΨ(t)
n−1∑
j=0

(Ψ(t)− Ψ(a))j

j!
x
[j]
λ,Ψ (a)

=
1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)F (s, x(s))ds.

So from initial conditions (4.2), Equation (4.3) follows.
On the other side, applying CDα,λ,Ψ

a to Equation (4.3) gives

CDα,λ,Ψ
a x(t) = CDα,λ,Ψ

a

[
e−λΨ(t)

n−1∑
j=0

(Ψ(t)− Ψ(a))j

j!
xj
a

]
+ CDα,λ,Ψ

a Iα,λ,Ψa F (t, x(t)).

Then, by the first relation of (3.1) and [9, Lemma 1],

CDα,λ,Ψ
a x(t) = e−λΨ(t)

n−1∑
j=0

CDα,Ψ
a ((Ψ(t)− Ψ(a))j)

xj
a

j!
+ F (t, x(t)).
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Since CDα,Ψ
a ((Ψ(t) − Ψ(a))j) = 0 whenever j < n, j ∈ N0 (see [1, equation

(2)]), Equation (4.1) follows.
It only remains to verify initial conditions (4.2). Note that for any k ∈ N0,[

e−λΨ(t)(Ψ(t)− Ψ(a))j
][k]
λ,Ψ

(a) = [(Ψ(t)− Ψ(a))j ]
[k]
Ψ (a)

=

[(
1

Ψ ′(t)

d

dt

)k

(Ψ(t)− Ψ(a))j

]
t=a

=

{
(Ψ(t)−Ψ(a))j−kj!

(j−k)! , k ≤ j

0, k > j

∣∣∣∣∣
t=a

= δjkj!,

where δjk is the Kronecker delta. Furthermore,

[
Iα,λ,Ψa F (t, x(t))

][k]
λ,Ψ

(a) =

[(
1

Ψ ′(t)

d

dt

)k (
eλΨ(t)Iα,λ,Ψa F (t, x(t))

)]
t=a

=

[(
1

Ψ ′(t)

d

dt

)k

Iα,Ψa (eλΨ(t)F (t, x(t)))

]
t=a

=
[
Iα,Ψa (eλΨ(t)F (t, x(t)))

][k]
Ψ

(a)

=

[
1

Γ (α− k)

∫ t

a

(Ψ(t)− Ψ(s))α−k−1Ψ ′(s)eλΨ(s)F (s, x(s))ds

]
t=a

= 0

for each k ≤ n − 1 < α, k ∈ N0 (for the penultimate equality see [2, proof of

Theorem 1]). Hence, applying f 7→ f
[k]
λ,Ψ (a) to (4.3) for some k = 0, 1, . . . , n−1,

the corresponding initial condition is confirmed. ⊓⊔

Before applying the generalized Laplace transform we need to be sure that
all the assumptions of Lemma 6 are satisfied.

Lemma 7. Let n − 1 < α < n for some n ∈ N, λ ≥ 0, Ψ ∈ Cn[a,∞) be such
that Ψ ′(t) > 0 for all t ≥ a. If the right-hand side F ∈ C([a,∞)×R,R) of (4.1)

is of Ψ -exponential order, then so are all the functions x
[k]
λ,Ψ , k = 0, 1, . . . , n−1,

where x(t) is a solution to initial value problem (4.1)–(4.2).

Proof. Let k ∈ {0, 1, . . . , n−1} be arbitrary and fixed. Applying the operator
Iα−k,λ,Ψ
a to Equation (4.1) yields

Iα−k,λ,Ψ
a

CDα,λ,Ψ
a x(t) = e−λΨ(t)Iα−k,Ψ

a
CDα,Ψ

a (eλΨ(t)x(t))

= e−λΨ(t)
[
x
[k]
λ,Ψ (t)−

n−1∑
j=k

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
λ,Ψ (a)

]
= Iα−k,λ,Ψ

a F (t, x(t))

due to relations (3.1) and Lemma 3. Therefrom,

x
[k]
λ,Ψ (t) =

n−1∑
j=k

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
λ,Ψ (a) + eλΨ(t)Iα−k,λ,Ψ

a F (t, x(t))

=

n−1∑
j=k

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
λ,Ψ (a)

+
1

Γ (α− k)

∫ t

a

(Ψ(t)− Ψ(s))α−k−1eλΨ(s)Ψ ′(s)F (s, x(s))ds. (4.4)
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Now, applying Remark 1, Ψ(t)-exponential order of F implies the existence of
M ≥ 0 and c > 0 such that |F (t, y)| ≤ MecΨ(t) for all t ≥ a. On the other side,∣∣∣∣ n−1∑

j=k

(Ψ(t)− Ψ(a))j−k

(j − k)!
x
[j]
λ,Ψ (a)

∣∣∣∣ ≤ max
j=0,1,...,n−1

|xj
a|

n−k−1∑
j=0

(Ψ(t)− Ψ(a))j

j!

≤eΨ(t)−Ψ(a) max
j=0,1,...,n−1

|xj
a|

with the right-hand side independent of k. Hence, denoting

Cic = e−Ψ(a) max
j=0,1,...,n−1

|xj
a|, (4.5)

from (4.4) we obtain

|x[k]
λ,Ψ (t)| ≤ Cice

Ψ(t) +
M

Γ (α− k)

∫ t

a

(Ψ(t)− Ψ(s))α−k−1eλΨ(s)Ψ ′(s)ecΨ(s)ds.

Taking the substitution Ψ(t)− Ψ(s) = q, we arrive at

|x[k]
λ,Ψ (t)| ≤Cice

Ψ(t) +
Me(λ+c)Ψ(t)

Γ (α− k)

∫ Ψ(t)−Ψ(a)

0

qα−k−1e−(λ+c)qdq

≤Cice
Ψ(t) +

Me(λ+c)Ψ(t)

Γ (α− k)

∫ ∞

0

qα−k−1e−(λ+c)qdq

=Cice
Ψ(t) +

Me(λ+c)Ψ(t)

(λ+ c)α−k
≤
(
Cic +

M

(λ+ c)α−k

)
emax{1,λ+c}Ψ(t)

for all t ≥ a. Since k was arbitrary, the proof is complete. ⊓⊔

To show that also a solution is appropriately bounded, we consider the following
linear equation

CDα,λ,Ψ
a x(t) = Ax(t) + f(t), t ≥ a (4.6)

with A ∈ R and f ∈ C[a,∞), n− 1 < α < n ∈ N.
Lemma 8. Let n − 1 < α < n for some n ∈ N, λ ≥ 0, Ψ ∈ Cn[a,∞) be such
that Ψ ′(t) > 0 for all t ≥ a. If f ∈ C[a,∞) is of Ψ -exponential order, then so
is the solution x to initial value problem (4.6), (4.2).

Proof. From Theorem 2 we have the integral representation of solution x,

x(t) =e−λΨ(t)
n−1∑
j=0

(Ψ(t)− Ψ(a))j

j!
xj
a

+
1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)(Ax(s) + f(s))ds.

Hence, for M ≥ 0, c > 0 such that |f(t)| ≤ MecΨ(t) for all t ≥ a, we get

|x(t)| ≤Cice
(1−λ)Ψ(t) +

|A|
Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)|x(s)|ds

+
M

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)ecΨ(s)ds
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for Cic given by (4.5). Using the substitution Ψ(t)− Ψ(s) = q, we can rewrite
the last term as

MecΨ(t)

Γ (α)

∫ Ψ(t)−Ψ(a)

0

qα−1e−(λ+c)qdq ≤ MecΨ(t)

(λ+ c)α
.

To tackle the case λ = 0 along with λ > 0, we introduce a new positive constant
ν < max{c, 1− λ}. Then u(t) = e−νΨ(t)|x(t)| satisfies

u(t) ≤
(
Cic +

M

(λ+ c)α

)
e(max{c,1−λ}−ν)Ψ(t)

+
|A|
Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−(λ+ν)(Ψ(t)−Ψ(s))Ψ ′(s)u(s)ds.

Now, we fix p > 1 such that p(α − 1) + 1 > 0 and set q = p
p−1 to be able to

apply Lemma 4. Consequently,

u(t) ≤ 2
1
p

(
Cic +

M

(λ+ c)α

)
e(max{c,1−λ}−ν)Ψ(t)eB(Ψ(t)−Ψ(a))

with

B =
2q−1

q

(
Γ (p(α− 1) + 1)

(p(λ+ ν))p(α−1)+1

) q
p
(

|A|
Γ (α)

)q

,

which means

|x(t)| ≤
[
2

1
p

(
Cic +

M

(λ+ c)α

)
e−BΨ(a)

]
e(max{c,1−λ}+B)Ψ(t).

This estimation gives that x is of Ψ(t)-exponential order. ⊓⊔

Now we can state a result on a solution to (4.6), (4.2).

Theorem 3. Let n− 1 < α < n for some n ∈ N, λ ≥ 0, Ψ ∈ Cn[a,∞) satisfy
assumption H. If f ∈ C[a,∞) is of Ψ(t)-exponential order, then a solution x
to initial value problem (4.6), (4.2) has the form

x(t) = e−λΨ(t)
n−1∑
k=0

(Ψ(t)− Ψ(a))kEα,k+1((Ψ(t)− Ψ(a))αA)xk
a

+

∫ t

a

(Ψ(t)−Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)Eα,α((Ψ(t)−Ψ(s))αA)f(s)ds, (4.7)

where Eα,β(z) =
∑∞

j=0
zj

Γ (αj+β) is the Mittag-Leffler function (cf. [4, §18.1]).

Proof. According to Lemmas 7 and 8 we can apply the generalized Laplace
transform to Equation (4.6). When we shortly denote X(s) = LΨ{x(t)}(s) and
F (s) = LΨ{f(t)}(s), by Lemma 6 we obtain

(s+ λ)αX(s)− e−λΨ(a)
n−1∑
k=0

(s+ λ)α−k−1xk
a = AX(s) + F (s)
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for all s sufficiently large. Therefrom,

X(s) =((s+ λ)α −A)−1

(
e−λΨ(a)

n−1∑
k=0

(s+ λ)α−k−1xk
a + F (s)

)

=(1−A(s+ λ)−α)−1

(
e−λΨ(a)

n−1∑
k=0

(s+ λ)−k−1xk
a + F (s)(s+ λ)−α

)
.

Expanding (1−A(s+ λ)−α)−1 into series we obtain

X(s) = e−λΨ(a)
n−1∑
k=0

∞∑
j=0

(A(s+λ)−α)j(s+λ)−k−1xk
a

+

∞∑
j=0

(A(s+λ)−α)jF (s)(s+λ)−α.

Therefore,

x(t) = e−λΨ(a)
n−1∑
k=0

Akx
k
a +Af , t ≥ a,

where

Ak =

∞∑
j=0

AjL−1
Ψ {(s+ λ)−k−1−αj}(t), k = 0, 1, . . . , n− 1,

Af =

∞∑
j=0

AjL−1
Ψ {(s+ λ)−(j+1)αF (s)}(t).

Here L−1
Ψ stands for an inverse of LΨ . Due to (3.2), and properties of Ψ , the

uniqueness of the inverse in the set of continuous functions follows from the
same property of the classic Laplace transform. From statement 2 of Lemma 1
one can see that for each k = 0, 1, . . . , n− 1,

Ak =

∞∑
j=0

Aj (Ψ(t)− Ψ(a))k+αje−λ(Ψ(t)−Ψ(a))

Γ (k + 1 + αj)

=(Ψ(t)− Ψ(a))ke−λ(Ψ(t)−Ψ(a))
∞∑
j=0

Aj(Ψ(t)− Ψ(a))αj

Γ (k + 1 + αj)

=(Ψ(t)− Ψ(a))ke−λ(Ψ(t)−Ψ(a))Eα,k+1((Ψ(t)− Ψ(a))αA).

Next, we apply both statements of Lemma 1, to derive

Af =
( ∞∑

j=0

AjL−1
Ψ {(s+ λ)−(j+1)α} ∗Ψ L−1

Ψ {F (s)}
)
(t)

=
(
f ∗Ψ

∞∑
j=0

AjL−1
Ψ {(s+ λ)−(j+1)α}

)
(t)
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=
(
f ∗Ψ

∞∑
j=0

Aj (Ψ(·)− Ψ(a))(j+1)α−1e−λ(Ψ(·)−Ψ(a))

Γ ((j + 1)α)

)
(t)

=
(
f ∗Ψ

(
(Ψ(·)− Ψ(a))α−1e−λ(Ψ(·)−Ψ(a))

∞∑
j=0

Aj(Ψ(·)− Ψ(a))αj

Γ ((j + 1)α)

))
(t)

=
(
f ∗Ψ

(
(Ψ(·)− Ψ(a))α−1e−λ(Ψ(·)−Ψ(a))Eα,α((Ψ(·)− Ψ(a))αA)

))
(t)

=

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)Eα,α((Ψ(t)− Ψ(s))αA)f(s)ds.

So we have proved the statement. ⊓⊔

In fact, the statement of Theorem 3 remains valid if we drop the assumption
on f :

Theorem 4. Let n− 1 < α < n for some n ∈ N, λ ≥ 0, Ψ ∈ Cn[a,∞) satisfy
assumption H, and f ∈ C[a,∞) be a given function. Then a solution x to
initial value problem (4.6), (4.2) has the form (4.7).

Proof. We shall show that x of (4.7) satisfies integral Equation (4.3) with
F (t, x(t)) = Ax(t) + f(t), i.e., A+ B = C +D + E + F on [a,∞), where

A(t) =e−λΨ(t)
n−1∑
k=0

(Ψ(t)− Ψ(a))kEα,k+1((Ψ(t)− Ψ(a))αA)xk
a,

B(t) =
∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)Eα,α((Ψ(t)− Ψ(s))αA)f(s)ds,

C(t) =e−λΨ(t)
n−1∑
k=0

(Ψ(t)− Ψ(a))k

k!
xk
a,

D(t) =
1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)AA(s)ds,

E(t) = 1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)AB(s)ds,

F(t) =
1

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)f(s)ds.

First, using the definition of the Mittag-Leffler function, we have

A(t) =e−λΨ(t)
n−1∑
k=0

(Ψ(t)− Ψ(a))k
∞∑
j=0

(Ψ(t)− Ψ(a))αjAjxk
a

Γ (k + 1 + αj)

=e−λΨ(t)
n−1∑
k=0

(Ψ(t)− Ψ(a))k
∞∑
j=1

(Ψ(t)− Ψ(a))αjAjxk
a

Γ (k + 1 + αj)
+ C(t).
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Next,

D(t) =
e−λΨ(t)

Γ (α)

∫ t

a

(Ψ(t)− Ψ(s))α−1Ψ ′(s)A

n−1∑
k=0

(Ψ(s)− Ψ(a))k

×
∞∑
j=0

(Ψ(s)− Ψ(a))αjAjxk
a

Γ (k + 1 + αj)
ds =

e−λΨ(t)

Γ (α)

n−1∑
k=0

∞∑
j=0

×
∫ t

a

(Ψ(t)− Ψ(s))α−1(Ψ(s)− Ψ(a))k+αjΨ ′(s)ds
Aj+1xk

a

Γ (k + 1 + αj)

and, after the substitution Ψ(a) + q(Ψ(t)− Ψ(a)) = Ψ(s), we get

D(t) =
e−λΨ(t)

Γ (α)

n−1∑
k=0

∞∑
j=0

∫ 1

0

(1− q)α−1qk+αjdq
(Ψ(t)− Ψ(a))k+α(j+1)Aj+1xk

a

Γ (k + 1 + αj)

=
e−λΨ(t)

Γ (α)

n−1∑
k=0

∞∑
j=0

B(α, k + 1 + αj)
(Ψ(t)− Ψ(a))k+α(j+1)Aj+1xk

a

Γ (k + 1 + αj)

=e−λΨ(t)
n−1∑
k=0

∞∑
j=0

(Ψ(t)− Ψ(a))k+α(j+1)Aj+1xk
a

Γ (k + 1 + α(j + 1))

=e−λΨ(t)
n−1∑
k=0

(Ψ(t)− Ψ(a))k
∞∑
j=1

(Ψ(t)− Ψ(a))αjAjxk
a

Γ (k + 1 + αj)
,

where B(t, s) =
∫ 1

0
(1 − q)t−1qs−1dq is the Euler beta function (cf. [16]). So

until now we have proved A = C +D. Note that if f ≡ 0, the proof is finished.
We continue with the case of general f . In E we change the order of inte-

gration:

E(t) = 1

Γ (α)

∫ t

a

∫ s

a

(Ψ(t)− Ψ(s))α−1e−λ(Ψ(t)−Ψ(q))Ψ ′(s)A

× (Ψ(s)− Ψ(q))α−1Ψ ′(q)Eα,α((Ψ(s)− Ψ(q))αA)f(q)dq ds

=
1

Γ (α)

∫ t

a

∫ t

q

(Ψ(t)−Ψ(s))α−1(Ψ(s)− Ψ(q))α−1e−λ(Ψ(t)−Ψ(q))Ψ ′(s)Ψ ′(q)

×AEα,α((Ψ(s)− Ψ(q))αA)f(q)ds dq =
1

Γ (α)

∫ t

a

e−λ(Ψ(t)−Ψ(q))

×
∞∑
j=0

∫ t

q

(Ψ(t)−Ψ(s))α−1(Ψ(s)−Ψ(q))α−1+αjΨ ′(s)ds
Aj+1Ψ ′(q)f(q)

Γ (α(j + 1))
dq.

Then the substitution Ψ(q) + σ(Ψ(t)− Ψ(q)) = Ψ(s) yields

E(t) = 1

Γ (α)

∫ t

a

e−λ(Ψ(t)−Ψ(q))
∞∑
j=0

∫ 1

0

(1− σ)α−1σα(j+1)−1dσ

× (Ψ(t)− Ψ(q))α(j+2)−1Aj+1Ψ ′(q)f(q)

Γ (α(j + 1))
dq,
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which after using the beta function gives

E(t) =
∫ t

a

e−λ(Ψ(t)−Ψ(q))

( ∞∑
j=0

(Ψ(t)− Ψ(q))α(j+2)−1Aj+1

Γ (α(j + 2))

)
Ψ ′(q)f(q)dq

=

∫ t

a

(Ψ(t)− Ψ(q))α−1e−λ(Ψ(t)−Ψ(q))

( ∞∑
j=1

(Ψ(t)−Ψ(q))αjAj

Γ (α(j + 1))

)
Ψ ′(q)f(q)dq.

On the other side, in F we apply

1

Γ (α)
=

[
(Ψ(t)− Ψ(q))αjAj

Γ (α(j + 1))

]
j=0

.

Therefore, B = E + F and the proof is complete. ⊓⊔

Remark 2. For 0 < α < 1 we observe the following:

1. If λ = 0, solution (4.7) coincides with a solution from [7, Theorem 5.2] of
the same problem.

2. Having a zero nonhomogeneity f , solution (4.7) is the same as the solution
in [9, Theorem 6].

Example 1. From Theorem 4 we obtain that the Cauchy problem

CDα,λ,Ψ
a x(t)− ωx(t) = f(t), t ≥ a, ω ∈ R, (4.8)

x(a) = xa

for 0 < α < 1, λ ≥ 0, Ψ ∈ C1[a,∞) satisfying assumption H and f ∈ C[a,∞),
has the solution

x(t) = e−λ(Ψ(t)−Ψ(a))Eα,1(ω(Ψ(t)− Ψ(a))α)xa

+

∫ t

a

(Ψ(t)−Ψ(s))α−1e−λ(Ψ(t)−Ψ(s))Ψ ′(s)Eα,α(ω(Ψ(t)− Ψ(s))α)f(s)ds. (4.9)

Note that this time x
[0]
λ,Ψ (a) = eλΨ(a)x(a) = eλΨ(a)xa.

In paper [7], the Cauchy problem (4.8) is studied with λ = 0. The coefficient
ω is denoted there by λ. The formula (40) from [7, Theorem 5.2] for the solution
to this problem can be obtained by putting λ = 0 in (4.9). Similarly, solution
to (4.8) with λ = 0, Ψ(t) = tρ

ρ from [6, Theorem 4.2] coincides with (4.9). To

illustrate the difference, we provide Figure 1 depicting solutions to (4.8) with
various values of λ and Ψ(t).

Remark 3. Although in this section we considered scalar differential equations,
all the results can be easily rewritten for systems, i.e., with xk

a ∈ RN , F ∈
C([a,∞) × RN ,RN ) and matrix A ∈ RN×N . In this case, the absolute value
should be replaced by a vector norm or the corresponding vector-induced matrix
norm. Then the generalized Laplace transform is understood component-wise.
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Figure 1. Solutions to (4.8) with a = 0, ω = 1, f ≡ 1, α = 1
2
, xa = 1 and 1. λ = 0,

Ψ(t) = t (black); 2. λ = 1, Ψ(t) = t (blue); 3. λ = 0, Ψ(t) = t+ t2 (red); 4. λ = 1,
Ψ(t) = t+ t2 (green).

5 Conclusions

Images of the tempered Ψ -Caputo fractional derivative and the tempered Ψ -
Hilfer fractional integral were found under the generalized Laplace transform.
These results were applied to derive a formula for a solution to an inital value
problem for a nonhomogeneous linear differential equation with tempered Ψ -
Caputo fractional derivative of a general non-integer order α > 0 and any
nonhomogeneity (of Ψ(t)-exponential order or not). A simple example was
given to compare solutions to the same initial value problem but with different
tempering and Ψ .

Possible problems to be investigated in the future using the method of this
paper include tempered Ψ -Caputo fractional differential equations with one
or multiple appropriate delays on the right-hand side, equations with linear
differential operator consisting of various tempered Ψ -Caputo derivatives on the
left-hand side, stability or asymptotic properties of solutions to such problems,
etc.
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